DOI QR코드

DOI QR Code

ON COMPLEXITY ANALYSIS OF THE PRIMAL-DUAL INTERIOR-POINT METHOD FOR SECOND-ORDER CONE OPTIMIZATION PROBLEM

  • Choi, Bo-Kyung (DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY) ;
  • Lee, Gue-Myung (DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY)
  • 투고 : 2010.05.26
  • 심사 : 2010.06.02
  • 발행 : 2010.06.25

초록

The purpose of this paper is to obtain new complexity results for a second-order cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOCO by using the proximity function and give its complexity analysis, and then we show that the new worst-case iteration bound for the IPM is $O(q\sqrt{N}(logN)^{\frac{q+1}{q}}log{\frac{N}{\epsilon})$, where $q{\geqq}1$.

키워드

참고문헌

  1. E. D. Andersen, J. Gondzio, Cs. Meszaros, and X. Xu, Implementation of interior point methods for large scale linear programming, in Interior Point Methods of Mathematical Programming, T. Terlaky, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, pp. 189-252.
  2. K. Amini and M. R. Peyghami, An Interior-point algorithm for linear optimization based on a new kernel function, Southeast Asian Bull. Math., 29, (2005), 651-667.
  3. K. Amini and M. R. Peyghami, Exploring complexity of large update interior-point methods for $P_*(\kappa)$ linear complementarity problem based on kernel function, Appl. Math. Comput., 207, (2009), 501-513. https://doi.org/10.1016/j.amc.2008.11.002
  4. Y. Q. Bai, M. El. Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15, No.1, (2004), 101-128. https://doi.org/10.1137/S1052623403423114
  5. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Analysis, Algorithms and Engineering Applications, MPS-SIAM Ser. Optim. 2, SIAM, Philadelphia, 2001.
  6. Y. Q. Bai and G. Q. Wang, Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, Acta Math. Sin. (Engl. Ser.), 23, No. 11, (2007), 2027-2042. https://doi.org/10.1007/s10114-007-0967-z
  7. Y. Q. Bai, G. Q. Wang and C. Roos, A new primal-dual interior-point algorithm for second-order cone optimization, November, 2004, preprint.
  8. G. M. Cho, M. K. Kim and Y. H. Lee, Complexity of large-update interior point algorithm for $P_*(\kappa)$ linear complementary problems, Comput. Math. Appl. 53(2007), 948-960. https://doi.org/10.1016/j.camwa.2006.12.004
  9. G. M. Cho and M. K. Kim, A new large-update interior point algorithm for $P_*(\kappa)$ LCPs based on kernel functions, Appl. Math. Comput., 182(2006), 1169-1183. https://doi.org/10.1016/j.amc.2006.04.060
  10. G. M. Cho, A new large-update interior point algorithm for $P_*(\kappa)$ linear complementarity problems, J. Comput. Appl. Math., 216(2008), 265-278. https://doi.org/10.1016/j.cam.2007.05.007
  11. B. K. Choi and G. M. Lee, On complexity analysis of the primal-dual interior-point methods for semidefinite optimization problem based on a new proximity function, Nonlinear Anal.-Theory Methods Appl., 71 (2009), e2628-e2640. https://doi.org/10.1016/j.na.2009.05.078
  12. L. Faybusovich, Euclidean Jordan and interior-point algorithms, Positivity, 1(1997), 331-357. https://doi.org/10.1023/A:1009701824047
  13. L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 86(1997), 149-175. https://doi.org/10.1016/S0377-0427(97)00153-2
  14. L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z., 239(2002), 117-129. https://doi.org/10.1007/s002090100286
  15. L. Faybusovich and R. Arana, A long-step primal-dual algorithm for symmetric programming problems, Systems Control Lett., 43(2001), 3-7. https://doi.org/10.1016/S0167-6911(01)00092-5
  16. L. Faybusovich and T. Tsuchiya, Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank, Math. Program., 97(2003), 471-493. https://doi.org/10.1007/s10107-003-0424-4
  17. J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford University Press, London, Oxford, UK, 1994.
  18. M. Seetharama Gowda, Roman Szajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra and its Applications 393(2004), 203-232. https://doi.org/10.1016/j.laa.2004.03.028
  19. E. de Klerk. Interior Point Methods for Semidefinite Programming, Ph. D. Thesis, Faculty of ITS/TWI, Delft University of Technology, The Netherlands, 1997.
  20. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming, Linear Algebra Appl., 284(1998), 193-228. https://doi.org/10.1016/S0024-3795(98)10032-0
  21. M. Muramatsu, On a commutative class of search directions for linear progrmming over symmetric cones, J. Optim. Theory Appl., 112(2002), 595-625. https://doi.org/10.1023/A:1017920200889
  22. Y. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Algorithms in Convex Programming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.
  23. J. Peng, C. Roos and T. Terlaky, Primal-dual interior-point methods for second-order conic optimization based on self-regular proximities, SIAM J. Optim., 13(2002), 179-203. https://doi.org/10.1137/S1052623401383236
  24. J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program., 93(2002), 129-171. https://doi.org/10.1007/s101070200296
  25. J. Peng, C. Roos and T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, Princeton, NJ, 2002.
  26. J. Peng, C. Roos and T. Terlaky, A new and efficient large-update interior-point method for linear optimization, J. Comput. Sci. Tech., 6 (2001), 61-80.
  27. J. Peng, C. Roos, T. Terlaky and A. Yoshise, Self-regular proximities and new search directions for nonlinear $P_*(\kappa)$ complementarity problems, preprint.
  28. J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization, MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2001.
  29. S. Schmieta and F. Alizadeh, Extensions of primal-dual interior-point algorithms to symmetric cones, Math. Program., 96(2003), 409-438. https://doi.org/10.1007/s10107-003-0380-z
  30. J. Sturm, Theory and algorithms of semidefinite programming, in High Performance Optimization, H. Frenk, C. Roos, T. Terlaky and S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, (1999), 3-194.
  31. T. Tsuchiya, A Polynomial Primal-Dual Path-Following Algorithm for Second-Order Cone Programming, Technical report 649, The Institute of Satistical Mathematics, Tokyo, 1997.
  32. T. Tsuchiya, A convergent analysis of the scaling-invariant primal-dual path-following algorithms for secondorder cone programming, Optim. Methods Softw., 11/12 (1999), 141-182.
  33. L. Tunc¸el, Potential reduction and primal-dual methods, in Handbook of Semidefinite Programming, Theory, Algorithms and Applications, H. Wolkowicz, R. Saigal and L. Vandenberghe, eds., Kluwer Academic Publichers, Boston, MA, 2000, pp. 235-265.