참고문헌
- L. Byszewski; Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505. https://doi.org/10.1016/0022-247X(91)90164-U
- L. Byszewski; Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. Systems Appl., 5(1996), 595-605.
- L. Byszewski and H. Akca; Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Anal., 34(1998), 65-72. https://doi.org/10.1016/S0362-546X(97)00693-7
- L. Byszewski and H. Akca; On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stochastic Anal., 10(1997), 265-271. https://doi.org/10.1155/S1048953397000336
- K. Balachandran and M. Chandrasekaran; The nonlocal Cauchy problem for semilinear integrodifferential equation with devating argument, Proceedings of the Edinburgh Mathematical Society, 44(2001), 63-70. https://doi.org/10.1017/S0013091598001060
- K. Balachandran and R. R. Kumar; Existence of solutions of integrodifferential evoluition equations with time varying delays, Applied Mathematics E-Notes, 7(2007), 1-8.
- K. Balachandran, J. Y. Park; Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. 71(2009), 4471-4475. https://doi.org/10.1016/j.na.2009.03.005
- M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338(2008), 1340-1350. https://doi.org/10.1016/j.jmaa.2007.06.021
- M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab; Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11(2008), 35-56.
- Yong-Kui Chang, V. Kavitha, M. Mallika Arjunan; Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order, Nonlinear Anal., 71(2009), 5551-5559. https://doi.org/10.1016/j.na.2009.04.058
- Diethelm, A. D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, pp. 217-224.
- M. M. El-Borai; Semigroup and some nonlinear fractional differential equations, Applied Mathematics and Computation, 149(2004), 823-831. https://doi.org/10.1016/S0096-3003(03)00188-7
- L. Gaul, P. Klein, S. Kempfle; Damping description involving fractional operators, Mech. Syst. Signal Process., 5(1991), 81-88. https://doi.org/10.1016/0888-3270(91)90016-X
- W. G. Glockle, T. F. Nonnenmacher; A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68(1995), 46-53. https://doi.org/10.1016/S0006-3495(95)80157-8
- R. Hilfer; Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- S. Hu and N. S. Papageorgiou, Handbook of multivalued Analysis (Theory), Kluwer Academic Publishers, Dordrecht Boston, London, 1997.
- Lanying Hu, Yong Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integrodifferential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, (in press).
- A. A. Kilbas, Hari M. Srivastava, J. Juan Trujillo; Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
- X. Li and J. Yong, Optimal control theory for infinite dimensional systems, Birkhauser Boston, 1995.
- V. Lakshmikantham, S. Leela and J. Vasundhara Devi; Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
- V. Lakshmikantham; Theory of fractional differential equations, Nonlinear Anal., 60(2008), 3337-3343.
- V. Lakshmikantham, A. S. Vatsala; Basic theory of fractional differential equations, Nonlinear Anal., 69(2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- K. S. Miller, B. Ross; An Introduction to the Fractional Calculus and Differential Equations, JohnWiley, New York, 1993.
- F. Mainardi, Fractional calculus; Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, pp. 291-348.
- F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmache; Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103(1995), 7180-7186. https://doi.org/10.1063/1.470346
- G. M. Mophou, G. M. N'Guerekata; Mild solutions for semilinear fractional differential equations, Electron. J. Differ. Equ., 21(2009), 1-9. https://doi.org/10.1007/s10884-008-9127-0
- G. M. Mophou, G. M. N'Gu¶er¶ekata; Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79(2009), 315-322. https://doi.org/10.1007/s00233-008-9117-x
- I. Podlubny; Fractional Differential Equations, Academic Press, San Diego, 1999.
- JinRong Wang, X. Xiang and W. Wei; A class of nonlinear integrodifferential impulsive periodic systems of mixed type and optimal controls on Banach spacs, Journal of Applied Mathematics and Computing, (in press).
피인용 문헌
- CONTROLLABILITY OF IMPULSIVE FRACTIONAL EVOLUTION INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES vol.15, pp.3, 2010, https://doi.org/10.12941/jksiam.2011.15.3.177
- Controllability of Second-Order Systems with Nonlocal Conditions in Banach Spaces vol.35, pp.4, 2010, https://doi.org/10.1080/01630563.2013.814067