References
- R. M. Anderson and R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University, Oxford, 1991.
- F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2001.
- N. F. Britton, Essential Mathematical Biology, Springer, London, 2003.
- O. Diekmann and J. A. P.Heesterbeek, Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation,Wiley Series in Mathematical and Computational Biology, JohnWiley and Sons, Chichester, 2000.
- H. W. Hethcote, The mathematics of infectious disease, SIAM Rev. 42 (2000) 599. https://doi.org/10.1137/S0036144500371907
- M. Lizana, J. Rivero, Multiparametric bifurcation for a model in epidemiology, J. Math. Biol. 35 (1996) 21. https://doi.org/10.1007/s002850050040
- S. Rauan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equat. 188 (2003) 135. https://doi.org/10.1016/S0022-0396(02)00089-X
- Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. 42 (2000) 931. https://doi.org/10.1016/S0362-546X(99)00138-8
- W. Wang and Z. Ma, Global dynamics of an epidemic model with time delay, Nonlinear Anal. Real World Appl. 3 (2002) 365. https://doi.org/10.1016/S1468-1218(01)00035-9
- W.Wang, Backward bifurcation of an epidemic model with treatment, Mathematical Biosciences 201 (2006) 58-71. https://doi.org/10.1016/j.mbs.2005.12.022
- J. Stanek, Kermack-McKendrick epidemics vaccinated, Kybernetika 44 (2008), 705-714.
- J. Stepan, D. Hlubinka, Kermack-McKendrick epidemic model revisited, Kybernetika 43 (2007), 395-414.
- F. Brauer, The Kermack-McKendrick epidemic model revisited, Mathematical Biosciences 198 (2005), 119-131. https://doi.org/10.1016/j.mbs.2005.07.006
- X. C. Huang, M. Villasana, An extension of the Kermack-McKendrick model for AIDS epidemic, Journal of the Franklin Institute 342 (2005).
- F. Brauer, Some simple epidemic models, Mathematical Biosciences and Engineering 3 (2006), 1-15.
- H. W. Hethcote, A thousand and one epidemic models, in: S.A. Levin, Frontiers in Mathematical Biology, Lecture Notes in Biomathematics, vol. 100, Springer, Berlin, 1994, p. 504.
- N. J. T. Bailey, in: The Mathematical Theory of Infectious Disease and its Applications, Griffin, London, 1975.
- O. Diekmann, J. A. P. Hecsterbeck and J. A. J. Metz, The legacy of Kermack and MacKendrick, in: D. Mollision (Ed.), in: Epidemic Models, their Structure and Relations to Data, Cambridge University, CamBridge, 1994.
- W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemic, Proc. R. Soc. London A115, (1927) 700-721.
- Z. Feng and H. R. Thieme, Recurrent out break of childhood diseases revisited: The impact of isolution, Math. Biosci. 128(1995) 93. https://doi.org/10.1016/0025-5564(94)00069-C
- L. Wu, Z. Feng, Homoclinic bifurcation in an SIQR model for childhood diseases, J. Differ. Equat. 168 (2000) 150. https://doi.org/10.1006/jdeq.2000.3882
- J. M. Hyman and J. Li, Modeling the effectiveness of isolation strategies in preventing STD epidemics, SIAM J. Appl. Math. 58 (1998) 912. https://doi.org/10.1137/S003613999630561X
- G. Birkoff and GC. Rota, Ordinary differential equations, Ginn, 1982.
- J. K. Hale, Ordinary Differential Equations, Wiley Interscience, New York, 1969.
- H. Khalil, 1992, Nonlinear systems, Macmillan, New York.
- B. D. Hassard, B. D. Kazarinoff and Y. H. Wan, Theory and application of Hopf-bifurcation, Cambridge University Press, Cambridge, 1981.