Noninformative priors for the common scale parameter in Pareto distributions

  • Kang, Sang-Gil (Department of Computer and Data Information, Sangji University)
  • 투고 : 2010.01.27
  • 심사 : 2010.03.15
  • 발행 : 2010.03.31

초록

In this paper, we develop the reference priors for the common scale parameter in the nonregular Pareto distributions with unequal shape paramters. We derive the reference priors as noninformative prior and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

키워드

참고문헌

  1. Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations. Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
  2. Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.2307/2290086
  3. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
  4. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, J.M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  5. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society, B, 113-147.
  6. Datta, G. S. (1996). On priors providing frequentist validity for Bayesian inference for multiple parametric functions. Biometrika, 83, 287-298. https://doi.org/10.1093/biomet/83.2.287
  7. Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
  8. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society, B, 56, 397-408.
  9. Elfessi, A. and Jin, C. (1996). On robust estimation of the common scale parameter of several Pareto distributions. Statistics & Probability Letters, 29, 345-352. https://doi.org/10.1016/0167-7152(95)00190-5
  10. Fernandez, A. J. (2008). Highest posterior density estimation from multiply censored Pareto data. Statistical Papers, 49, 333-341.
  11. Geisser, S. (1984). Prediction Pareto and exponential observables. Canadian Journal of Statistics, 12, 143-152. https://doi.org/10.2307/3315178
  12. Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185. https://doi.org/10.1016/0304-4076(85)90038-7
  13. Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
  14. Ghosal, S. (1999). Probability matching priors for non-regular cases. Biometrika, 86, 956-964. https://doi.org/10.1093/biomet/86.4.956
  15. Ghosal, S. and Samanta, T. (1997). Expansion of Bayes risk for entropy loss and reference prior in nonregular cases. Statistics and Decisions, 15, 129-140.
  16. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV, J.M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
  17. Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  18. Ko, J. H. and Kim, Y. H. (1999). Bayesian prediction inference for censored Pareto model. Journal of the Korean Data & Information Science Society, 10, 147-154.
  19. Lee J. and Lee, W. D. (2008). Likelihood based inference for the shape parameter of Pareto distribution. Journal of the Korean Data & Information Science Society, 19, 1173-1181.
  20. Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55, 170-178.
  21. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  22. Nigm, A. M. and Hamdy, H. L. (1987). Bayesian prediction bounds for the Pareto lifetime model. Communications in Statistics: Theory and Methods, 16, 1761-1772. https://doi.org/10.1080/03610928708829470
  23. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics. Banach Center Publications, 16, 485-514.
  24. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  25. Tiwari, R. C., Yang, Y. and Zalkikar, J. N. (1996). Bayes estimation for the Pareto failure-model using Gibbs sampling. IEEE Transactions on Reliability, 45, 471-476. https://doi.org/10.1109/24.537018
  26. Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 318-329.