References
- Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics, 31, 377-403.
- Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics, 8, 140-154. https://doi.org/10.1093/biostatistics/kxj039
- Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis, John Wiley & Sons.
- Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772 .
- Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334 .
- Karlsson, A. (2008). Nonlinear quantile regression estimation for longitudinal data. Communications in Statistics - Simulation and Computation, 37, 114-131.
- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebychean spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
- Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91, 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
- Koenker, R. and Bassett. G. (1978). Regression quantile. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker, R. and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 40, 122-142.
- Koenker, R. and Park, B. J. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71, 265-283. https://doi.org/10.1016/0304-4076(96)84507-6
- Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Mercer, J. (1909). Functions of positive and ngative type and their cnnection with theory of integral equations. Philosophical Transactions of Royal Society, 415-446.
- Shim , J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360 .
- Shim , J., Kim, T. Y., Lee, S. and Hwang, C. (2009). Credibility estimation via kernel mixed effects model. Journal of Korean Data & Information Science Society 20, 445-452 .
- Smola, A. and Scholkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approx-imation and operator inversion. Algorithmica, 22, 211-231. https://doi.org/10.1007/PL00013831
- Wu, H. and Zhang, J. (2006). Nonparametric regression methods for longitudinal data analysis, Wiley.
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research area. The Statistician, 52, Part3, 331-350.
- Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008