DOI QR코드

DOI QR Code

Thermal Conductivity Measurement of High-k Oxide Thin Films

High-k 산화물 박막의 열전도도 측정

  • Kim, In-Goo (Department of Physics, University of Ulsan) ;
  • Oh, Eun-Ji (Department of Physics, University of Ulsan) ;
  • Kim, Yong-Soo (Department of Physics, University of Ulsan) ;
  • Kim, Sok-Won (Department of Physics, University of Ulsan) ;
  • Park, In-Sung (Department of Materials Science &Engineering, Hanyang University) ;
  • Lee, Won-Kyu (School of Mechanical and Automotive Engineering, University of Ulsan)
  • Received : 2010.01.05
  • Accepted : 2010.03.19
  • Published : 2010.03.30

Abstract

In this study, high-k oxide films like $Al_2O_3$, $TiO_2$, $HfO_2$ were deposited on Si, $SiO_2$/Si, GaAs wafers, and then the thermal conductivity was measured by using thermo-reflectance method which utilizes the reflectance variation of the film surface produced by the periodic temperature variation. The result shows that high-k oxide films with 50 nm thickness have high thermal conductivity of 0.80~1.29 W/(mK). Therefore, effectively dissipate the heat generated in the electric circuit such as CMOS memory device, and the heat transfer changes according to the micro grain size.

$Al_2O_3$, $TiO_2$, $HfO_2$와 같은 high-k (고 유전상수) 산화물 박막을 Si, $SiO_2$/Si, GaAs 기판에 각각 입혀서 주기적인 온도변화에 의해 발생되는 박막 표면에서의 반사율 변화를 이용한 열-반사율법을 이용하여 열전도도를 측정하였다. 그 결과, 약 50nm 두께에서 0.80~1.29 W/(mK)와 같은 높은 열전도도를 가지고 있어 CMOS와 메모리 디바이스와 같은 전자 회로에서 발생되는 열을 효과적으로 방산할 수 있고, 또 미세 입자의 크기에 따라 열전달이 변화하는 것을 확인하였다.

Keywords

References

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  2. S. C. Chen, J. C. Lou, and C. H. Chien, Thin Solid Films. 488, 167 (2005). https://doi.org/10.1016/j.tsf.2005.01.023
  3. J. H. Mun, S. W. Kim, R. Kato, I. Hatta, S. H. Lee, and K. H Kang, Thermochimica Acta. 455, 55 (2007). https://doi.org/10.1016/j.tca.2006.11.018
  4. N. Taketoshi, T. Baba, and A. Ono, Jpn. J. Appl. Phys. 38, L126 (1999). https://doi.org/10.1143/JJAP.38.L126
  5. S. M. Lee and D. G. Cahill. Rev. B52, 253 (1995). https://doi.org/10.1103/PhysRevB.52.253
  6. S. M. Lee and D. G. Cahill, J. Appl. Phys. 81, 2950 (1997).
  7. R. Kato and I. Hatta, Int. J. Thermophys. 26, 179 (2005). https://doi.org/10.1007/s10765-005-2365-z
  8. D. Guidotti and H. M. van Driel, Appl. Phys. Lett. 47, 1336 (1985). https://doi.org/10.1063/1.96272
  9. S. J. Ahn and C. G. Park, J. Korea Magnetics Soc. 15, 287 (2005). https://doi.org/10.4283/JKMS.2005.15.5.287
  10. T. H. Lee and H. K. Ko, J. Ahn, J. Appl. Phys. 45, 6693 (2006).
  11. J. H. Blackwell, J. Appl. Phys. 25, 127 (1954).
  12. S. H. Kim, E. H. Lee, I. W. Jung, J. H. Hyun, S. Y. Lee, M. I. Kang, and J. W. Ryu, J. Korea Vacuum Soc. 18, 133 (2009) https://doi.org/10.5757/JKVS.2009.18.2.133
  13. S. G. Choi and A. Sivasankar Reddy, J. Korea Vacuum Soc. 17, 130 (2008) https://doi.org/10.5757/JKVS.2008.17.2.130
  14. S. E. Gustafsson and E. Karawhchi, Rev. Sci. Instr. 54, 744 (1983). https://doi.org/10.1063/1.1137466
  15. Takuji Maekawa and Ken Kurosaki, Surface & Coatings Technology 202, 3067 (2008). https://doi.org/10.1016/j.surfcoat.2007.11.017
  16. S. W. Shin and H. N. Cho, Thin Solid Films 517, 933 (2008). https://doi.org/10.1016/j.tsf.2008.06.090