DOI QR코드

DOI QR Code

Nanotubular Structures of Oxides and Their Applications

산화물 나노튜브 구조체 제작 방법 및 그 응용

  • Yoo, Hyun-Jun (Department of Materials Science and Engineering, Kookmin University) ;
  • Bae, Chang-Deuck (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Hyun-Chul (Department of Materials Science and Engineering, Kookmin University) ;
  • Yoon, Young-Jin (Department of Materials Science and Engineering, Kookmin University) ;
  • Kim, Myung-Jun (Department of Materials Science and Engineering, Kookmin University) ;
  • Shin, Hyun-Jung (Department of Materials Science and Engineering, Kookmin University)
  • 유현준 (국민대학교 신소재공학부) ;
  • 배창득 (연세대학교 신소재공학과) ;
  • 김현철 (국민대학교 신소재공학부) ;
  • 윤영진 (국민대학교 신소재공학부) ;
  • 김명준 (국민대학교 신소재공학부) ;
  • 신현정 (국민대학교 신소재공학부)
  • Received : 2010.01.19
  • Accepted : 2010.03.10
  • Published : 2010.03.30

Abstract

One-dimensional nanostructures have been researched widely because of its unique physical properties such as optical, electrical, mechanical, and chemical properties in comparison with bulk structures. Especially nanotubular structures are able to provide larger surface area, capability to load purposeful materials, and unique mechanical modulus. We reviewed the oxide nanotube technology with focusing on the method of template-directed fabrication. We can easily control of physical dimensions of nanotubes by control of nanotemplate and fabrication condition. and template-directed fabrication is ideal tool to fabricate the amount of monodisperse nanotubes. They have potentials for application in solar cell, drug-delivery, Li-ion batteries and photocatalyst. We discussed these potential applications and research trends.

일차원 나노튜브는 구조는 높은 비표면적, 내부의 빈 공간 및 특유의 물리적 특징을 제공한다. 1차원 산화물 나노튜브 구조물의 합성 방법에 따라 나누어 정리하여 논의하였다. 나노 기판을 이용한 나노튜브 합성은 고른 물리적 구조를 가지는 나노튜브를 대량으로 합성하는데 있어서 이상적인 방법으로서 기판의 형태를 상대적으로 용의하게 조절함으로써 1차원 나노튜브 구조물의 특성을 극대화하였다. 극대화된 특성을 이용한 여러 응용 분야에 대한 연구를 정리하여 제시하였다.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. B. O'Regan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, and A. Agostiano, Mater. Sci. Eng. C 23, 707 (2003). https://doi.org/10.1016/j.msec.2003.09.101
  4. K. Wang, M. Wei, M. A. Morris, H. Zhou, and J. D. Holmes Adv. Mater. 19, 3016-3020 (2007). https://doi.org/10.1002/adma.200602189
  5. O. K. Varghese, D. Gong, M. Paulose, and K. G. Ong, Sens. & Act. B 93, 338 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
  6. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005). https://doi.org/10.1038/nmat1387
  7. J. H. Park, S. Kim, and Allen J. Bard, Nano Lett. 6, 24 (2006) https://doi.org/10.1021/nl051807y
  8. P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, Nat. Nanotechnol 4, 292 (2009) https://doi.org/10.1038/nnano.2009.37
  9. B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Chem. Mater. 9, 2544 (1997). https://doi.org/10.1021/cm970268y
  10. B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Chem. Mater. 9, 857 (1997). https://doi.org/10.1021/cm9605577
  11. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, J. Mater. Chem. 9, 2971 (1999). https://doi.org/10.1039/a906005g
  12. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, S. Shinkai, and S. Shinkai, Chem. Mater. 12, 1523 (2000). https://doi.org/10.1021/cm0000907
  13. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, J. Mater. Chem. 10, 2005 (2000) https://doi.org/10.1039/b004543h
  14. R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater. 13, 1577 (2001). https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  15. J. Bao, D. Xu, Q. Zhou, Z. Xu, Y. Feng, Y. Zhou, Chem. Mater. 14, 4709 (2002). https://doi.org/10.1021/cm0201753
  16. S. Z. Chu, K. Wada, and S. Inoue, Adv. Mater. 14, 1752. (2002). https://doi.org/10.1002/1521-4095(20021203)14:23<1752::AID-ADMA1752>3.0.CO;2-1
  17. A. Michailowski, D. Almawlawi, G. Cheng, and M. Moskovits, Chem. Phys. Lett. 349, 1 (2001). https://doi.org/10.1016/S0009-2614(01)01159-9
  18. B. Cheng, and E. T. Samulski, J. Mater. Chem. 11, 2901 (2001). https://doi.org/10.1039/b108167e
  19. B. A. Hernandez, K.-S. Chang, E. R. Fisher, P. K. Dorhout, Chem. Mater. 14, 480 (2002) https://doi.org/10.1021/cm010998c
  20. R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Nano Lett. 4, 513 (2004) https://doi.org/10.1021/nl0352494
  21. N. I. Kovtyukhova, T. E. Mallouk, and T. S. Mayer, Adv. Mater. 15, 780 (2003). https://doi.org/10.1002/adma.200304701
  22. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, J. Am. Chem. Soc. 125, 5254 (2003). https://doi.org/10.1021/ja034163+
  23. T. Kasuga, M. Hiramatsu, and A. Hoson, Langmuir 14, 3160 (1998) https://doi.org/10.1021/la9713816
  24. V. Zwilling, M. Aucouturier, and E. Darque-Ceretii, Electrochem. Acta. 45, 921 (1999). https://doi.org/10.1016/S0013-4686(99)00283-2
  25. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A Grimes, Nanotechnology 18, 065707 (2007). https://doi.org/10.1088/0957-4484/18/6/065707
  26. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004). https://doi.org/10.1002/adma.200306296
  27. D. Li and Y. Xia, Adv. Mater. 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  28. S. Baral and P. Schoen, Chem. Mater. 5, 145 (1993). https://doi.org/10.1021/cm00026a001
  29. P. Hoyer, Langmuir 12, 1411 (1996). https://doi.org/10.1021/la9507803
  30. M. Ferrari, Nat. Rev. Cancer 5, 161 (2005). https://doi.org/10.1038/nrc1566
  31. T. M. Allen and P. R. Cullis, Science 303, 1818 (2004). https://doi.org/10.1126/science.1095833
  32. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem. 110, 2323 (1998) https://doi.org/10.1002/(SICI)1521-3757(19980817)110:16<2323::AID-ANGE2323>3.0.CO;2-Z
  33. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Angew. Chem. Int. Ed. 37, 2201 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
  34. F. Caruso, Adv. Mater. 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  35. D. G. Shchukin and H. Möhwald, Small 3, 926 (2007). https://doi.org/10.1002/smll.200700064
  36. R. Savic, L. Luo, A. Eisenberg, and D. Maysinger, Science 300, 615 (2003). https://doi.org/10.1126/science.1078192
  37. Y. Wang, S. Gao, W.-H. Ye, H. S. Yoon, and Y.-Y. Yang, Nat. Mater. 5, 791 (2006). https://doi.org/10.1038/nmat1737
  38. M. S. Wendland and S. C. Zimmerman, J. Am. Chem. Soc. 121, 1389 (1999). https://doi.org/10.1021/ja983097m
  39. D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer, Science 276, 1868 (1997). https://doi.org/10.1126/science.276.5320.1868
  40. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin, J. Am. Chem. Soc. 124, 11864 (2002). https://doi.org/10.1021/ja027247b
  41. H. Hillebrenner, F. Buyukserin, M. Kang, M. O. Mota, J. D. Stewart, and C. R. Martin, J. Am. Chem. Soc. 128, 4236 (2006). https://doi.org/10.1021/ja058455h
  42. C.-C. Chen, Y.-C. Liu, C.-H. Wu, C.-C. Yeh, M.-T. Su, and Y.-C. Wu, Adv. Mater. 17, 404 (2005). https://doi.org/10.1002/adma.200400966
  43. C. Bae, H. Kim, D. Han, H. Yoo, J. Kim, and H. Shin, Small 5, 1936 (2008).
  44. M. Gratzel, Inorg. Chem. 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  45. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005). https://doi.org/10.1038/nmat1387
  46. G. K. Mor, K. Chankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006). https://doi.org/10.1021/nl052099j
  47. O. K. Varghese, M. Paulose, and C. A. Grimes, Nat. Nanotechnol. 4, 592 (2009).
  48. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett. 7, 69 (2007). https://doi.org/10.1021/nl062000o
  49. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, Nano Lett. 7, 2183 (2007). https://doi.org/10.1021/nl070160+
  50. A. Fujishima and K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
  51. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  52. U. Diebold, Surf. Sci. Rep. 48, 53 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  53. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, Nano Lett. 7, 1286 (2007). https://doi.org/10.1021/nl070264k
  54. C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008). https://doi.org/10.1038/nnano.2007.411
  55. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Nano Lett. 9, 3844 (2009). https://doi.org/10.1021/nl902058c
  56. H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, and H.-M. Cheng, Nanotechnology 20, 225701 (2009). https://doi.org/10.1088/0957-4484/20/22/225701