형광펩타이드를 이용한 Oligosaccharyltransferase Assay 방법 연구

Comparison of Oligosaccharyltransferase Assay Methods Using a Fluorescent Peptide

  • 김성훈 (한국생명공학연구원 오믹스 융합 연구센터)
  • Kim, Seong-Hun (Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 투고 : 2009.12.08
  • 심사 : 2010.01.08
  • 발행 : 2010.03.31

초록

단백질의 N-글리코실화는 대표적인 번역 후 변형 중의 하나로 진핵생물 뿐 아니라 원핵생물에서도 발견된다. N-글리코실화는 단백질 상의 N-글리코실 서열인 N-x-S/T 위치에 지질과 연결된 올리고당(lipid-linked oligosaccharide, LLO)으로부터 올리고당 전이효소(oligosaccharyltransferase, OTase) 활성에 의해 글리칸(glycan)이 전달되어 당단백질의 합성이 이루어진다. 본 연구에서는 OTase의 세포내 활성을 측정하기 위하여 5/6-carboxyltetramethylrhodamine (TAMRA)이 도입된 형광펩타이드 TAMRA-DA$\underline{N}$Y$\underline{T}$K-$NH_2$를 이용하였다. OTase활성 측정은 단일 서브유닛으로 효소의 활성을 갖는 운동핵 편모충류인 Leishmania major Stt3p와 병원성 미생물인 Campylobacter jejuni PglB를 진핵생물과 원핵생물의 모델 효소로 각각 사용하여 Saccharomyces cerevisiae와 C. jejuni 유래 LLO와 형광 펩타이드를 반응시켜 당-펩타이드를 합성하였다. 합성된 당-펩타이드를 미반응한 형광펩타이드와 분리 및 당-펩타이드의 정량 분석을 위하여 Tricine SDS-PAGE, ConA 렉틴 컬럼 및 fluorospectrophotometer, HPLC를 사용하였으며, 당-펩타이드 분석을 통해 각 방법의 장단점을 비교하였다. 비교 분석 결과 Tricine SDS-PAGE를 이용한 형광 이미지 분석과, 렉틴 컬럼을 통해 분리된 당-펩타이드의 fluorospectrophotometer 정량법에 비해, HPLC를 이용한 방법이 OTase에 의해 생성된 당-펩타이드를 분석하는데 더 정확하고 정량적인 값을 제시하는 것으로 확인되었다.

Oligosaccharyltransferase (OTase) catalyzes the transfer of a lipid-linked oligosaccharide (LLO) to the nascent polypeptide. Most eukaryotes have an OTase composed of a multisubunit protein complex. However, the kinetoplastid Leishmania major and the bacterium Campylobacter jejuni have only a single subunit for OTase activity, Stt3p and PglB, respectively. In this study, a new in vitro assay for OTase was developed by using a fluorescent peptide containing N-glycosylation sequon, Asn-Xaa-Thr/Ser, where Xaa can be any amino acid residue except Pro. L. major Stt3p and C. jejuni PglB as a model OTase enzyme demonstrated the formation of glycopeptides from a fluorescent peptide through OTase activities. For separation and measurement of the glycopeptides produced by the OTases, Tricine-SDS-PAGE, a lectin column and fluorospectrophotometer, and HPLC were applied. Comparison of these assay methods for analyzing a fluorescent glycopeptide showed HPLC analysis is the best method for separation of glycopeptides and nonglycosylated peptides as well as for quantify the peptides than other methods.

키워드

참고문헌

  1. Castro, O., F. Movsichoff, and A.J. Parodi. 2006. Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc. Natl. Acad. Sci. USA 103, 14756-14760. https://doi.org/10.1073/pnas.0607086103
  2. Chavan, M., A. Yan, and W.J. Lennarz. 2005. Subunits of the translocon interact with components of the oligosaccharyl transferase complex. J. Biol. Chem. 280, 22917-22924. https://doi.org/10.1074/jbc.M502858200
  3. Helenius, A. and M. Aebi. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Ann. Rev. Biochem. 73, 1019-1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752
  4. Hese, K., C. Otto, F.H. Routier, and L. Lehle. 2009. The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Glycobiology 19, 160-171.
  5. Izquierdo, L., B.L. Schulz, J.A. Rodrigues, M.L. Güther, J.B. Procter, G.J. Barton, M. Aebi, and M.A. Ferguson. 2009. Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J. 28, 2650-2661. https://doi.org/10.1038/emboj.2009.203
  6. Karamyshev, A.L., D.J. Kelleher, R. Gilmore, A.E. Johnson, G. von Heijne, and I. Nilsson. 2005. Mapping the interaction of the STT3 subunit of the oligosaccharyl transferase complex with nascent polypeptide chains. J. Biol. Chem. 280, 40489-40493. https://doi.org/10.1074/jbc.M509168200
  7. Kelleher, D.J., S. Banerjee, A.J. Cura, J. Samuelson, and R. Gilmore. 2007. Dolichol-linked oligosaccharide selection by the oligosaccharyltransferase in protist and fungal organisms. J. Cell Biol. 177, 29-37. https://doi.org/10.1083/jcb.200611079
  8. Kelleher, D.J. and R. Gilmore. 1994. The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J. Biol. Chem. 269, 12908-12917.
  9. Kelleher, D.J. and R. Gilmore. 2006. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R-62R. https://doi.org/10.1093/glycob/cwj066
  10. Kelleher, D.J., D. Karaoglu, and R. Gilmore. 2001. Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: determination of steady-state dolichollinked oligosaccharide compositions. Glycobiology 11, 321-333. https://doi.org/10.1093/glycob/11.4.321
  11. Kim, S. 2009. Optimization of the purification of Leishmania major Stt3p expressed in Saccharomyces cerevisiae. Submitted.
  12. Kim, H., G. von Heijne, and I. Nilsson. 2005. Membrane topology of the STT3 subunit of the oligosaccharyl transferase complex. J. Biol. Chem. 280, 20261-20267. https://doi.org/10.1074/jbc.M412213200
  13. Kohda, D., M. Yamada, M. Igura, J. Kamishikiryo, and K. Maenaka. 2007. New oligosaccharyltransferase assay method. Glycobiology 17, 1175-1182. https://doi.org/10.1093/glycob/cwm087
  14. Kowarik, M., S. Numao, M.F. Feldman, B.L. Schulz, N. Callewaert, E. Kiermaier, I. Catrein, and M. Aebi. 2006. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314, 1148-1150. https://doi.org/10.1126/science.1134351
  15. Nasab, F.P., B.L. Schulz, F. Gamarro, A.J. Parodi, and M. Aebi. 2008. All in one: Leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol. Biol. Cell. 19, 3758-3768. https://doi.org/10.1091/mbc.E08-05-0467
  16. Nita-Lazar, M., M. Wacker, B. Schegg, S. Amber, and M. Aebi. 2005. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15, 361-367. https://doi.org/10.1093/glycob/cwi019
  17. Reid, C.W., J. Stupak, M.M. Chen, B. Imperiali, J. Li, and C.M. Szymanski. 2008. Affinity-capture tandem mass spectrometric characterization of polyprenyl-linked oligosaccharides: tool to study protein N-glycosylation pathways. Anal. Chem. 80, 5468- 5475. https://doi.org/10.1021/ac800079r
  18. Samuelson, J., S. Banerjee, P. Magnelli, J. Cui, D.J. Kelleher, R. Gilmore, and P.W. Robbins. 2005. The diversity of dolichollinked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc. Natl. Acad. Sci. USA 102, 1548-1553. https://doi.org/10.1073/pnas.0409460102
  19. Seddon, A.M., P. Curnow, and P.J. Booth. 2004. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105-117. https://doi.org/10.1016/j.bbamem.2004.04.011
  20. Schagger, H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22. https://doi.org/10.1038/nprot.2006.4
  21. Spirig, U., M. Glavas, D. Bodmer, G. Reiss, P. Burda, V. Lippuner, S. te Heesen, and M. Aebi. 1997. The STT3 protein is a component of the yeast oligosaccharyltransferase complex. Mol. Gen. Genet. 256, 628-637. https://doi.org/10.1007/s004380050611
  22. Wacker, M., M.F. Feldman, N. Callewaert, M. Kowarik, B.R. Clarke, N.L. Pohl, M. Hernandez, E.D. Vines, M.A. Valvano, C. Whitfield, and M. Aebi. 2006. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA 103, 7088-7093. https://doi.org/10.1073/pnas.0509207103
  23. Weerapana, E. and B. Imperiali. 2006. Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 6, 91R-101R.
  24. Yan, Q. and W.J. Lennarz. 2002. Studies on the function of oligosaccharyl transferase subunits. Stt3p is directly involved in the glycosylation process. J. Biol. Chem. 277, 47692-47700. https://doi.org/10.1074/jbc.M208136200
  25. Zufferey, R., R. Knauer, P. Burda, I. Stagljar, S. te Heesen, L. Lehle, and M. Aebi. 1995. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 14, 4949-4960.