Isolation of Pseudoxanthomonas sp. W12 and WD32 Producing Extracellular Protease

단백질분해효소를 생산하는 Pseudoxanthomonas sp. WD12와 WD32의 분리

  • Cho, Woon-Dong (Department of Microbiology, Chungbuk National University) ;
  • Lee, Je-Kwan (Department of Microbiology, Chungbuk National University) ;
  • Lim, Chae-Sung (Department of Microbiology, Chungbuk National University) ;
  • Park, A-Rum (Department of Microbiology, Chungbuk National University) ;
  • Oh, Yong-Sik (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 조운동 (충북대학교 자연과학대학 미생물학과) ;
  • 이제관 (충북대학교 자연과학대학 미생물학과) ;
  • 임채성 (충북대학교 자연과학대학 미생물학과) ;
  • 박아름 (충북대학교 자연과학대학 미생물학과) ;
  • 오용식 (충북대학교 자연과학대학 미생물학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Received : 2010.02.10
  • Accepted : 2010.02.26
  • Published : 2010.03.31

Abstract

Proteases catalyze hydrolytic cleavage of a peptide bond between amino acids and occupy pivotal positions in application in physiological and commercial fields. During the screening for novel bacteria producing extracellular protease, two bacterial strains, WD12 and WD32, were isolated from rotten trees and they made clear zone on LB plates supplemented with 1% skim milk. The similarities of 16S rRNA gene sequence of either WD12 or WD32 to GenBank database showed the highest to Pseuoxanthomonas mexicana as 97.8 and 99.8%, respectively. Phylogenetic analysis showed that both isolated was located within the cluster comprising P. mexicana and P. japonesis. WD12 and WD32 were catalase- and oxidase-positive, Gram-negative rod strains. In case of WD12, it could assimilate malate, but could not assimilate D-mannose, which were different characteristics from P. mexicana. Both Pseuoxanthomonas sp. WD12 and WD32 optimally produced extracellular protease at $35-37^{\circ}C$, and maximal activity showed as 656 unit/ml and 267 unit/ml, respectively.

생리 및 상업적 응용분야에서 중요한 위치를 차지하는 단백질 분해효소는 펩타이드 결합의 가수분해를 촉매한다. 단백질 분해효소를 생산하는 신규 균주를 분리하기 위하여 부패한 나무로부터 균을 분리하여 1% skim milk가 포함된 LB 배지에서 투명환의 생성 능력이 높은 두 균주 WD12와 WD32를 선발하였다. 선발균주의 동정을 위하여 16S rRNA gene의 염기서열을 결정한 후 GenBank 상에 등록된 서열들과 상동성을 조사한 결과, WD12는 Pseudoxanthomonas mexicana와 97.8%, WD32는 99.8%의 상동성을 보여주었다. 계통적 유연관계를 조사한 결과 이들 균들은 P. mexicana와 P. japonensis와 cluster를 형성하였다. WD12와 WD32는 그람 음성 간균으로 catalase와 oxidase 활성을 보였다. WD12의 경우 P. mexicanna와 달리 malate를 동화할 수 있었으며, D-mannose를 동화할 수 없었다. 두 균주의 최적 단백질 분해효소를 생산하는 온도는 $35-37^{\circ}C$로 나타났으며, 최대활성은 WD12가 656 unit/ml, WD32가 267 unit/ml을 나타내었다.

Keywords

References

  1. Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheeler. 2008. GenBank. Nucleic Acids Res. 36(Database issue), D25-D30
  2. Cha, I.T., H.J. Lim, and D.H. Roh. 2007. Isolation of Pseudoaltermonas sp. HJ 47 from deep sea water of East Sea and characterization of its extracellular protease. J. Life Sci. 17, 272-278. https://doi.org/10.5352/JLS.2007.17.2.272
  3. Cha, I.T., Y.S. Oh, and D.H. Roh. 2007. Isolation of characterization of Micrococcus sp. HJ-19 secreting extracellular protease. Kor. J. Microbiol. 43, 222-226.
  4. Cowan, D. 1983. Industrial applications: Proteins, pp. 353-374. In T. Godfrey and S. West (eds.), Industrial enzymology-The application of enzymes in industry. The Nature Press, New York, N.Y., USA.
  5. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  6. Godfrey, T. and S. West. 1996. Industrial enzymology. 2nd ed. Macmillan Publisher Inc., New York, N.Y., USA.
  7. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  8. Hanker, J.S. and A.N. Rabin. 1975. Color reaction streak test for catalase-positive microorganisms. J. Clin. Microbiol. 2, 463-464.
  9. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, UK.
  10. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5, 150-163. https://doi.org/10.1093/bib/5.2.150
  11. Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  12. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635.
  13. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  14. Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849. https://doi.org/10.1099/00207713-44-4-846
  15. Thierry, S., H. Macarie, T. Iizuka, W. Geissdorfer, E.A. Assih, M. Spanevello, F. Verhe, and et al. 2004. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int. J. Syst. Evol. Microbiol. 54, 2245-2255. https://doi.org/10.1099/ijs.0.02810-0
  16. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463-464. https://doi.org/10.1099/00207713-37-4-463