참고문헌
- Abe, F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846. https://doi.org/10.3168/jds.S0022-0302(95)76914-4
- Abu-Tarboush, H. M., M. Y. Al-Saiady and A. H. Keir El-Din. 1996. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 57:39-49. https://doi.org/10.1016/0377-8401(95)00850-0
- Adams, M. C., J. Luo, D. Rayward, S. King, R. Gibson and G. H. Moghaddam. 2008. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim. Feed Sci. Technol. 145:41-52. https://doi.org/10.1016/j.anifeedsci.2007.05.035
- Arthur, T. M., J. M. Bosilevac, N. Kalchayanand, J. E. Wells, S. D. Shackelfold, T. L. Wheeler and M. Koohmaraie. 2010. Evaluation of a direct-fed microbial product effect on the prevalence and load of escherichia coli o157:H7 in feedlot cattle. J. Food Prot. 73:366-371.
- Axelsson, L. T., T. C. Chung, W. Dobrogosz and S. E. Lidgren. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2:131-136. https://doi.org/10.3109/08910608909140210
- Beharka, A. A., T. G. Nagaraja and J. L. Morrill. 1991. Performance and ruminal function development of young calves fed diets with aspergillus oryzae fermentation extract. J. Dairy Sci. 74:4326-4336. https://doi.org/10.3168/jds.S0022-0302(91)78628-1
- Carlsson, J., Y. Iwami and T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase thiocyanate-hydrogen peroxide. Inf. Immunol. 40:70-80.
- Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon and P. Gouet. 1995. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42:927-933.
- Chiquette, J., M. J. Allison and M. A. Rasmussen. 2008. Prevotella bryantii 25a used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91:3536-3543. https://doi.org/10.3168/jds.2007-0849
- Cotter, P. D., C. Hill and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777-788. https://doi.org/10.1038/nrmicro1273
- Cruywagen, C. W., I. Jordaan and L. Venter. 1996. Effect of lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 79:483-486. https://doi.org/10.3168/jds.S0022-0302(96)76389-0
- Dicks, L. M. T. and M. Botes. 2010. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 1:11-29. https://doi.org/10.3920/BM2009.0012
- Dobrogosz, W. J., I. A. Casas, G. A. Pagano, T. L. Talarico, B. M.Sjoberg and M. Karlsson. 1989. Lactobacillus reuteri and the enteric microbiota. In: The Regulatory and protective role of the normal microflora (Ed. E. Norin). pp. 283-292. Stockton Press. New York.
- Elam, N. A., J. F. Gleghorm, J. D. Rivera, M. L. Galyean, P. J. Defoor, M. M. Brashears and S. M. Younts-Dahl. 2003. Effects of live cultures of lactobacillus acidophilus (strains np45 and np51) and propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and escherichia coli strain o157 shedding of finishing beef steers. J. Anim. Sci. 81:2686-2698.
- Forestier, C., C. De Champs, C. Vatoux and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173. https://doi.org/10.1016/S0923-2508(01)01188-3
- Frizzo, L. S., L. P. Sotto, M. V. Zbrun, E. Bertozzi, G. Sequeira, R. R. Armesto and M. R. Rosmini. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 157:159-167. https://doi.org/10.1016/j.anifeedsci.2010.03.005
- Fuller, R. 1989. A review: Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
- Galyean, M. L., G. A. Nunnery, P. J. Defoor, G. B. Salyer and C. H. Parsons. 2000. Effects of live cultures of Lactobacillus acidophilus (Strains 45 and 51) and Propionibacterium freudenreichii PF-24 on performance and carcass characteristics of finishing beef steers. Available: http://www.asft.ttu.edu/burnettcenter/progressreports/bc8.pdf. Accessed June 27, 2002.
- Ghorbani, G. R., D. P. Morgavi, K. A. Beauchemin and J. A. Z. Leedle. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J. Anim. Sci. 80:1977-1985.
- Gilliland, S. E. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494. https://doi.org/10.3168/jds.S0022-0302(89)79389-9
- Gregg, K., B. Hamdorf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetic acid poisoning. Appl. Environ. Microbiol. 64:3496-3498.
- Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820-2833.
- Holzapfel, W. H., R. Geisen and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343-362. https://doi.org/10.1016/0168-1605(94)00036-6
- Hong, H. A., L. H. Duc and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. https://doi.org/10.1016/j.femsre.2004.12.001
- Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197. https://doi.org/10.1016/S0168-1605(00)00366-4
- Jones, R. J. and R. G. Megaritty. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259-262. https://doi.org/10.1111/j.1751-0813.1986.tb02990.x
- Jones, G. W. and J. M. Rutter. 1972. Role of K88 antigen in the pathogenesis of neonatal diarrhoea caused by Escherichia coli in piglets. Infect. Immun. 6:918-927.
- Jouany, J. P., F. Mathieu, J. Senaud, J. Bohatier, G. Bertin and M. Mercier. 1999. Influence of protozoa and fungal additives on ruminal pH and redox potential. S. Afr. J. Anim. Sci. 29:65-66.
- Keyser, S. A., J. P. McMeniman, D. R. Smith, J. C. MacDonald and M. L. Galyean. 2007. Effects of saccharomyces cerevisiae subspecies boulardii cncm i-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 85:1264-1273. https://doi.org/10.2527/jas.2006-751
- Kim, S. W. 2006. Development of a direct-fed microbial for beef cattle. PhD Dissertation. Mich. Stat. Univ. East Lansing, MI.
- Kowalski, Z. M., P. Gorka, A. Schlagheck, W. Jagusiak, P. Micek and J. Strzetelski. 2009. Performance of holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 18:399-411.
- Krehbiel, C. R., S. R. Rust, G. Zhang and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81:E120-132.
- Kritas, S. K., A. Govaris, G. Christodoulopoulos and A. R. Burriel. 2006. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J. Vet. Med. Series A. 53:170-173. https://doi.org/10.1111/j.1439-0442.2006.00815.x
- Kung, L., Jr. and A. O. Hession. 1995. Preventing in vitro lactic acid accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci. 73:250-256.
- Kung Jr, L. 2001. Direct-fed microbials for dairy cows and enzymes for lactating dairy cows: New theories and applications. In: 2001 Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. pp. 86-102.
- Lee, Y. K., K. Y. Puong, A. C. Ouwehand and S. Salminen. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52:925-930. https://doi.org/10.1099/jmm.0.05009-0
- Lehloenya, K. V., C. R. Krehbiel, K. J. Mertz, T. G. Rehberger and L. J. Spicer. 2008. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. J. Dairy Sci. 91:653-662. https://doi.org/10.3168/jds.2007-0474
- Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
- Malik, R. and S. Bandla. 2010. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (bubalus bubalis) calves. Trop. Anim. Health Prod. 42:1263-1269. https://doi.org/10.1007/s11250-010-9559-5
- Matsuguchi, T., A. Takagi, T. Matsuzaki, M. Nagaoka, K. Ishikawa and T. Yokokura. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor a-inducing activities in macrophage through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10:259-266.
- Miettinen, M., J. Vuopio-Varkila and K. Varkila. 1996. Production of human necrosis factor a, interleukin 6, and interleukin 10 is induced by lactic acid bacteria. Infect. Immun. 64:5403-5405.
- Miyagi, T., K. Kaneichi, R. I. Aminov, Y. Kobayashi, K. Sakka, S. Hoshino and K. Ohmiya. 1995. Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen. Appl. Environ. Microbiol. 61:2030-2032.
- Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. pp. 523-632 in the Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional, London, NY.
- Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and J. G. Allman. 2002. Ruminal supplementation of direct-fed microbials on diurnal ph variation and in situ digestion in dairy cattle. J. Dairy Sci. 85:429-433. https://doi.org/10.3168/jds.S0022-0302(02)74091-5
- Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:331-335. https://doi.org/10.3168/jds.S0022-0302(03)73610-8
- Nocek, J. E. and W. P. Kautz. 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 89:260-266. https://doi.org/10.3168/jds.S0022-0302(06)72090-2
- Oetzel, G. R., K. M. Emery, W. P. Kautz and J. E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. J. Dairy Sci. 90:2058-2068. https://doi.org/10.3168/jds.2006-484
- Ohya, T., T. Marubashi and H. Ito. 2000. Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J. Vet. Med. Sci. 62:1151-1155. https://doi.org/10.1292/jvms.62.1151
- Pratt, W. C. 2001. Methods for maintaining and administering live probiotic as feed additives for animals. US Patent 5401501. Available: http://www.patentstorm. us/patents/5401501-fulltext.html. Accessed Jun. 15, 2007.
- Qiao, G. H., A. S. Shan, N. Ma, Q. Q. Ma and Z. W. Sun. 2009. Effect of supplemental bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 94:429-436.
- Raeth-Knight, M. L., J. G. Linn and H. G. Jung. 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of holstein dairy cows. J. Dairy Sci. 90:1802-1809. https://doi.org/10.3168/jds.2006-643
- Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries and D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 86:1201-1217. https://doi.org/10.3168/jds.S0022-0302(03)73704-7
- Ripamonti, B., A. Agazzi, A. Baldi, C. Balzaretti, C. Bersani, S. Pirani, R. Rebucci, G. Savoini, S. Stella, A. Stenico and C. Domeneghini. 2009. Administration of Bacillus coagulans in calves: Recovery from faecal samples and evaluation of functional aspects of spores. Vet. Res. Commun. 33:991-1001. https://doi.org/10.1007/s11259-009-9318-0
- Robinson, J. A., W. J. Smolenski, R. C. Greening, M. L. Ogilvie, R. L. Bell, K. Barsuhn and J. P. Peters. 1992. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J. Anim. Sci. 70 (Suppl. 1):310 (Abstr.).
- Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.
- Rose, A. H. 1987. Responses to the chemical environment. In: The Yeasts (Ed. A. H. Rose and J. S. Harrisson) Vol. 2, Academic Press, London (1987), pp. 5-40.
- Roos, T. B., V. C. Tabeleão, L. A. Dümmer, E. Schwegler, M. A. Goulart, S. V. Moura, M. N. Corrêa, F. P. L. Leite and C. Gil- Turnes. 2010. Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food Agric. Immunol. 21:113-118. https://doi.org/10.1080/09540100903443691
- Sanders, M. E., L. Morelli and T. A. Tompkins. 2003. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr. Rev. Food Sci. Food Saf. 2:101-110. https://doi.org/10.1111/j.1541-4337.2003.tb00017.x
- Silva, M., N. V. Jacobus, C. Deneke and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231-1233. https://doi.org/10.1128/AAC.31.8.1231
- Stein, D. R., D. T. Allen, E. B. Perry, J. C. Bruner, K. W. Gates, T. G. Rehberger, K. Mertz, D. Jones and L. J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 89:111-125. https://doi.org/10.3168/jds.S0022-0302(06)72074-4
- Swinney-Floyd, D., B. A. Gardiner, F. N. Owens and T. Rehberger. 1999. Effects of inoculation with either Propionibacterium strain P-63 alone or in combination with Lactobacillus acidophilus strain LA53545 on performance of feedlot cattle. J. Anim. Sci. 77 (Suppl.):77 (Abstr.).
- Tamate, H., A. D. McGilliard, N. L. Jacobson and R. Getty. 1961. Effect of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408-420.
- Yoon, I. K. and M. D. Stern. 1995. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review. Asian-Aust. J. Anim. Sci. 8:533-555. https://doi.org/10.5713/ajas.1995.553
- Wehnes, C., K. Novak, V. Patskevich, D. Shields, J. Coalson, A. Smith, M. Davis and T. Rehberger. 2009. Benefits of supplementation of an electrolyte scour treatment with a bacillus-based direct-fed microbial for calves. Probiotics Antimicrob. Proteins 1:36-44. https://doi.org/10.1007/s12602-008-9004-5
- Weiss, W. P., D. J. Wyatt and T. R. McKelvey. 2008. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 91:646-652. https://doi.org/10.3168/jds.2007-0693
피인용 문헌
- Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World vol.7, pp.5, 2012, https://doi.org/10.1371/journal.pone.0035748
- Ruminal Acidosis in Feedlot: From Aetiology to Prevention vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/702572
- Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14517
- Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept vol.4, pp.1, 2014, https://doi.org/10.1186/s13568-014-0064-5
- Effects of Direct-fed Microbial and Pine Cone Extract on Carcass Traits and Meat Quality of Hanwoo (Korean Native Cattle) vol.29, pp.5, 2015, https://doi.org/10.5713/ajas.15.0303
- fermentation of cereal straws vol.87, pp.1, 2015, https://doi.org/10.1111/asj.12346
- Physically adjusted neutral detergent fiber system for lactating dairy cow rations. II: Development of feeding recommendations vol.100, pp.12, 2017, https://doi.org/10.3168/jds.2017-12766
- Nutritive Value, in vitro Fermentation Characteristics and Nutrient Digestibility of Agro-industrial Byproducts-based Complete Feed Block Enriched with Mixed Microbes vol.16, pp.6, 2017, https://doi.org/10.3923/pjn.2017.470.476
- Nutritional and microbiological quality of bovine colostrum samples in Brazil vol.46, pp.1, 2017, https://doi.org/10.1590/s1806-92902017000100011
- L28 Isolated from Ground Beef vol.5, pp.39, 2017, https://doi.org/10.1128/genomeA.00955-17
- Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05376-z
- Sugarcane Bagasse as the Potential Agro-Waste Resource for the Immobilization of Lactobacillus rhamnosus NRRL 442 vol.1043, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1043.214
- Effects of Selected Lactobacillus plantarum as Probiotic on In vitro Ruminal Fermentation and Microbial Population vol.17, pp.3, 2018, https://doi.org/10.3923/pjn.2018.131.139
- In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170255
- Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170121
- Combination of Xylanase and Bacillus Direct-fed Microbials, as an Alternative to Antibiotic Growth Promoters, Improves Live Performance and Gut Health in Subclinical Challenged Broilers vol.17, pp.8, 2018, https://doi.org/10.3923/ijps.2018.362.366
- Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1213-9
- Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep vol.31, pp.3, 2018, https://doi.org/10.5713/ajas.17.0654
- Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle vol.97, pp.11, 2014, https://doi.org/10.3168/jds.2014-8248
- Effects of direct-fed Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed conversion, and health condition of pre- and postpartum Holstein cows vol.98, pp.9, 2015, https://doi.org/10.3168/jds.2015-9512
- Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00057
- Integrating 16S rRNA Sequencing and LC–MS-Based Metabolomics to Evaluate the Effects of Live Yeast on Rumen Function in Beef Cattle vol.9, pp.1, 2019, https://doi.org/10.3390/ani9010028
- Effect of Fumarate Reducing Bacteria on In Vitro Rumen Fermentation, Methane Mitigation and Microbial Diversity vol.52, pp.2, 2010, https://doi.org/10.1007/s12275-014-3518-1
- In vitro modulation of rumen microbiota and fermentation by native microorganisms isolated from the rumen of a fed-exclusively-on-pasture bovine vol.65, pp.4, 2015, https://doi.org/10.1007/s13213-015-1077-2
- Direct-Fed Microbial: Beneficial Applications, Modes of Action and Prospects as a Safe Tool for Enhancing Ruminant Production and Safeguarding Health vol.12, pp.3, 2010, https://doi.org/10.3923/ijp.2016.220.231
- In vitro Nutrient Digestibility and Fermentation Characteristics of King Grass Combined with Concentrate-Containing Mixed Microbes vol.15, pp.8, 2010, https://doi.org/10.3923/pjn.2016.784.788
- 혼합 생균제 급여가 거세한우의 성장, 혈액성상 및 육질에 미치는 영향 vol.26, pp.8, 2010, https://doi.org/10.5322/jesi.2017.26.8.967
- Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation vol.8, pp.12, 2010, https://doi.org/10.3390/ani8120235
- Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-46076-0
- Performance and feed efficiency of beef cattle fed high energy diet with probiotic consortium technology vol.20, pp.None, 2010, https://doi.org/10.1590/s1519-9940200182019
- A Systematic Approach to Identify and Characterize the Effectiveness and Safety of Novel Probiotic Strains to Control Foodborne Pathogens vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.01108
- The Effect of Probiotics on High Fiber Diet in Rumen Fermentation Characteristics vol.251, pp.None, 2010, https://doi.org/10.1088/1755-1315/251/1/012057
- Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants vol.61, pp.3, 2010, https://doi.org/10.5187/jast.2019.61.3.122
- Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs vol.15, pp.None, 2010, https://doi.org/10.1186/s12917-019-2064-9
- Manipulating the rumen microbiome to address challenges facing Australasian dairy farming vol.60, pp.1, 2010, https://doi.org/10.1071/an18611
- Oral administration of lactate producing bacteria alone or combined with Saccharomyces cerevisiae and Megasphaera elsdenii on performance of fattening lambs vol.48, pp.1, 2010, https://doi.org/10.1080/09712119.2020.1773830
- Dynamic role of single‐celled fungi in ruminal microbial ecology and activities vol.128, pp.4, 2020, https://doi.org/10.1111/jam.14427
- Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage vol.158, pp.4, 2010, https://doi.org/10.1017/s0021859620000611
- Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers vol.33, pp.7, 2010, https://doi.org/10.5713/ajas.19.0785
- Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs vol.31, pp.4, 2010, https://doi.org/10.1080/10495398.2019.1604380
- Conjugated linoleic acid producing potential of lactobacilli isolated from goat (AXB) rumen fluid samples vol.33, pp.8, 2010, https://doi.org/10.5713/ajas.19.0080
- Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans vol.12, pp.3, 2020, https://doi.org/10.1007/s12602-019-09570-5
- Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro vol.69, pp.3, 2010, https://doi.org/10.1080/09064702.2020.1737215
- Effects of microbial feed additives on feed utilization and growth performance in growing Barki lambs fed diet based on peanut hay vol.31, pp.5, 2020, https://doi.org/10.1080/10495398.2019.1616554
- Enhancing the Utilization of Palm Leaf Hay Using Bacillus subtilis and Phanerochaete chrysosporium in the Diet of Lambs Under Desert Conditions vol.20, pp.4, 2010, https://doi.org/10.2478/aoas-2020-0052
- Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows vol.10, pp.10, 2010, https://doi.org/10.3390/agronomy10101482
- Probiotic powder production for cattle by using response surface methodology vol.591, pp.None, 2010, https://doi.org/10.1088/1755-1315/591/1/012028
- The Novel Solution for Acid Whey Permeate Application in Animal Feeding vol.44, pp.339, 2020, https://doi.org/10.2478/plua-2020-0011
- Effects of the supplementation of a calcium soap containing medium‐chain fatty acids on the fecal microbiota of pigs, lactating cows, and calves vol.92, pp.1, 2010, https://doi.org/10.1111/asj.13636
- Supplemental effect of Chaya (Cnidoscolus aconitifolius) leaf pellet on rumen fermentation, nutrients digestibility and microbial protein synthesis in growing crossbred bulls vol.20, pp.1, 2010, https://doi.org/10.1080/1828051x.2021.1880978
- Antagonistic properties and biocompatibility as important principles for development of effective and biosafety probiotic drugs vol.663, pp.1, 2010, https://doi.org/10.1088/1755-1315/663/1/012008
- Evaluating the effects of Lactobacillus animalis and Propionibacterium freudenreichii on performance and rumen and fecal measures in lactating dairy cows vol.104, pp.4, 2021, https://doi.org/10.3168/jds.2020-19291
- Effects of dietary microbial feed supplement on production efficacy in lactating dairy cows vol.2, pp.3, 2010, https://doi.org/10.3168/jdsc.2020-0002
- Optimization of medium composition for probiotic powder inoculum using the response surface methodology vol.788, pp.1, 2010, https://doi.org/10.1088/1755-1315/788/1/012038
- Effect of mixed live yeast and lactic acid bacteria on in vitro fermentation with varying media pH using a high-grain or high-forage diet vol.101, pp.2, 2021, https://doi.org/10.1139/cjas-2020-0138
- Alteration of cofactor specificity of the acrylyl-CoA reductase from Escherichia coli vol.43, pp.7, 2021, https://doi.org/10.1007/s10529-021-03130-0
- Influence of three microbial feed additives of Megasphaera elsdenii, Saccharomyces cerevisiae and Lactobacillus sp. on ruminal methane and carbon dioxide production, and biofermentation kinetics vol.131, pp.2, 2010, https://doi.org/10.1111/jam.14990
- Prebiotics, probiotics and postbiotics for sustainable poultry production vol.77, pp.4, 2021, https://doi.org/10.1080/00439339.2021.1960234
- Lactobacillus plantarum as feed additive to improvement in vitro ruminal biofermentation and digestibility of some tropical tree leaves vol.131, pp.6, 2010, https://doi.org/10.1111/jam.15129
- Pellets Inoculated with Bacillus amyloliquefaciens H57 Modulates Diet Preference and Rumen Factors Associated with Appetite Regulation in Steers vol.11, pp.12, 2021, https://doi.org/10.3390/ani11123455