DOI QR코드

DOI QR Code

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, Seon-Woo (Department of Animal and Avian Sciences, University of Maryland) ;
  • Kim, Myung-Hoo (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Upadhaya, Santi D. (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Kam, Dong-Keun (CJFeed/Animal Research Institute) ;
  • Ha, Jong-K. (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
  • 발행 : 2010.12.01

초록

Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

키워드

참고문헌

  1. Abe, F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846. https://doi.org/10.3168/jds.S0022-0302(95)76914-4
  2. Abu-Tarboush, H. M., M. Y. Al-Saiady and A. H. Keir El-Din. 1996. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 57:39-49. https://doi.org/10.1016/0377-8401(95)00850-0
  3. Adams, M. C., J. Luo, D. Rayward, S. King, R. Gibson and G. H. Moghaddam. 2008. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim. Feed Sci. Technol. 145:41-52. https://doi.org/10.1016/j.anifeedsci.2007.05.035
  4. Arthur, T. M., J. M. Bosilevac, N. Kalchayanand, J. E. Wells, S. D. Shackelfold, T. L. Wheeler and M. Koohmaraie. 2010. Evaluation of a direct-fed microbial product effect on the prevalence and load of escherichia coli o157:H7 in feedlot cattle. J. Food Prot. 73:366-371.
  5. Axelsson, L. T., T. C. Chung, W. Dobrogosz and S. E. Lidgren. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2:131-136. https://doi.org/10.3109/08910608909140210
  6. Beharka, A. A., T. G. Nagaraja and J. L. Morrill. 1991. Performance and ruminal function development of young calves fed diets with aspergillus oryzae fermentation extract. J. Dairy Sci. 74:4326-4336. https://doi.org/10.3168/jds.S0022-0302(91)78628-1
  7. Carlsson, J., Y. Iwami and T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase thiocyanate-hydrogen peroxide. Inf. Immunol. 40:70-80.
  8. Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon and P. Gouet. 1995. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42:927-933.
  9. Chiquette, J., M. J. Allison and M. A. Rasmussen. 2008. Prevotella bryantii 25a used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91:3536-3543. https://doi.org/10.3168/jds.2007-0849
  10. Cotter, P. D., C. Hill and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777-788. https://doi.org/10.1038/nrmicro1273
  11. Cruywagen, C. W., I. Jordaan and L. Venter. 1996. Effect of lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 79:483-486. https://doi.org/10.3168/jds.S0022-0302(96)76389-0
  12. Dicks, L. M. T. and M. Botes. 2010. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 1:11-29. https://doi.org/10.3920/BM2009.0012
  13. Dobrogosz, W. J., I. A. Casas, G. A. Pagano, T. L. Talarico, B. M.Sjoberg and M. Karlsson. 1989. Lactobacillus reuteri and the enteric microbiota. In: The Regulatory and protective role of the normal microflora (Ed. E. Norin). pp. 283-292. Stockton Press. New York.
  14. Elam, N. A., J. F. Gleghorm, J. D. Rivera, M. L. Galyean, P. J. Defoor, M. M. Brashears and S. M. Younts-Dahl. 2003. Effects of live cultures of lactobacillus acidophilus (strains np45 and np51) and propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and escherichia coli strain o157 shedding of finishing beef steers. J. Anim. Sci. 81:2686-2698.
  15. Forestier, C., C. De Champs, C. Vatoux and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173. https://doi.org/10.1016/S0923-2508(01)01188-3
  16. Frizzo, L. S., L. P. Sotto, M. V. Zbrun, E. Bertozzi, G. Sequeira, R. R. Armesto and M. R. Rosmini. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 157:159-167. https://doi.org/10.1016/j.anifeedsci.2010.03.005
  17. Fuller, R. 1989. A review: Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  18. Galyean, M. L., G. A. Nunnery, P. J. Defoor, G. B. Salyer and C. H. Parsons. 2000. Effects of live cultures of Lactobacillus acidophilus (Strains 45 and 51) and Propionibacterium freudenreichii PF-24 on performance and carcass characteristics of finishing beef steers. Available: http://www.asft.ttu.edu/burnettcenter/progressreports/bc8.pdf. Accessed June 27, 2002.
  19. Ghorbani, G. R., D. P. Morgavi, K. A. Beauchemin and J. A. Z. Leedle. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J. Anim. Sci. 80:1977-1985.
  20. Gilliland, S. E. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494. https://doi.org/10.3168/jds.S0022-0302(89)79389-9
  21. Gregg, K., B. Hamdorf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetic acid poisoning. Appl. Environ. Microbiol. 64:3496-3498.
  22. Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820-2833.
  23. Holzapfel, W. H., R. Geisen and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343-362. https://doi.org/10.1016/0168-1605(94)00036-6
  24. Hong, H. A., L. H. Duc and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. https://doi.org/10.1016/j.femsre.2004.12.001
  25. Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197. https://doi.org/10.1016/S0168-1605(00)00366-4
  26. Jones, R. J. and R. G. Megaritty. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259-262. https://doi.org/10.1111/j.1751-0813.1986.tb02990.x
  27. Jones, G. W. and J. M. Rutter. 1972. Role of K88 antigen in the pathogenesis of neonatal diarrhoea caused by Escherichia coli in piglets. Infect. Immun. 6:918-927.
  28. Jouany, J. P., F. Mathieu, J. Senaud, J. Bohatier, G. Bertin and M. Mercier. 1999. Influence of protozoa and fungal additives on ruminal pH and redox potential. S. Afr. J. Anim. Sci. 29:65-66.
  29. Keyser, S. A., J. P. McMeniman, D. R. Smith, J. C. MacDonald and M. L. Galyean. 2007. Effects of saccharomyces cerevisiae subspecies boulardii cncm i-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 85:1264-1273. https://doi.org/10.2527/jas.2006-751
  30. Kim, S. W. 2006. Development of a direct-fed microbial for beef cattle. PhD Dissertation. Mich. Stat. Univ. East Lansing, MI.
  31. Kowalski, Z. M., P. Gorka, A. Schlagheck, W. Jagusiak, P. Micek and J. Strzetelski. 2009. Performance of holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 18:399-411.
  32. Krehbiel, C. R., S. R. Rust, G. Zhang and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81:E120-132.
  33. Kritas, S. K., A. Govaris, G. Christodoulopoulos and A. R. Burriel. 2006. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J. Vet. Med. Series A. 53:170-173. https://doi.org/10.1111/j.1439-0442.2006.00815.x
  34. Kung, L., Jr. and A. O. Hession. 1995. Preventing in vitro lactic acid accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci. 73:250-256.
  35. Kung Jr, L. 2001. Direct-fed microbials for dairy cows and enzymes for lactating dairy cows: New theories and applications. In: 2001 Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. pp. 86-102.
  36. Lee, Y. K., K. Y. Puong, A. C. Ouwehand and S. Salminen. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52:925-930. https://doi.org/10.1099/jmm.0.05009-0
  37. Lehloenya, K. V., C. R. Krehbiel, K. J. Mertz, T. G. Rehberger and L. J. Spicer. 2008. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. J. Dairy Sci. 91:653-662. https://doi.org/10.3168/jds.2007-0474
  38. Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
  39. Malik, R. and S. Bandla. 2010. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (bubalus bubalis) calves. Trop. Anim. Health Prod. 42:1263-1269. https://doi.org/10.1007/s11250-010-9559-5
  40. Matsuguchi, T., A. Takagi, T. Matsuzaki, M. Nagaoka, K. Ishikawa and T. Yokokura. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor a-inducing activities in macrophage through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10:259-266.
  41. Miettinen, M., J. Vuopio-Varkila and K. Varkila. 1996. Production of human necrosis factor a, interleukin 6, and interleukin 10 is induced by lactic acid bacteria. Infect. Immun. 64:5403-5405.
  42. Miyagi, T., K. Kaneichi, R. I. Aminov, Y. Kobayashi, K. Sakka, S. Hoshino and K. Ohmiya. 1995. Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen. Appl. Environ. Microbiol. 61:2030-2032.
  43. Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. pp. 523-632 in the Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional, London, NY.
  44. Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and J. G. Allman. 2002. Ruminal supplementation of direct-fed microbials on diurnal ph variation and in situ digestion in dairy cattle. J. Dairy Sci. 85:429-433. https://doi.org/10.3168/jds.S0022-0302(02)74091-5
  45. Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:331-335. https://doi.org/10.3168/jds.S0022-0302(03)73610-8
  46. Nocek, J. E. and W. P. Kautz. 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 89:260-266. https://doi.org/10.3168/jds.S0022-0302(06)72090-2
  47. Oetzel, G. R., K. M. Emery, W. P. Kautz and J. E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. J. Dairy Sci. 90:2058-2068. https://doi.org/10.3168/jds.2006-484
  48. Ohya, T., T. Marubashi and H. Ito. 2000. Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J. Vet. Med. Sci. 62:1151-1155. https://doi.org/10.1292/jvms.62.1151
  49. Pratt, W. C. 2001. Methods for maintaining and administering live probiotic as feed additives for animals. US Patent 5401501. Available: http://www.patentstorm. us/patents/5401501-fulltext.html. Accessed Jun. 15, 2007.
  50. Qiao, G. H., A. S. Shan, N. Ma, Q. Q. Ma and Z. W. Sun. 2009. Effect of supplemental bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 94:429-436.
  51. Raeth-Knight, M. L., J. G. Linn and H. G. Jung. 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of holstein dairy cows. J. Dairy Sci. 90:1802-1809. https://doi.org/10.3168/jds.2006-643
  52. Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries and D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 86:1201-1217. https://doi.org/10.3168/jds.S0022-0302(03)73704-7
  53. Ripamonti, B., A. Agazzi, A. Baldi, C. Balzaretti, C. Bersani, S. Pirani, R. Rebucci, G. Savoini, S. Stella, A. Stenico and C. Domeneghini. 2009. Administration of Bacillus coagulans in calves: Recovery from faecal samples and evaluation of functional aspects of spores. Vet. Res. Commun. 33:991-1001. https://doi.org/10.1007/s11259-009-9318-0
  54. Robinson, J. A., W. J. Smolenski, R. C. Greening, M. L. Ogilvie, R. L. Bell, K. Barsuhn and J. P. Peters. 1992. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J. Anim. Sci. 70 (Suppl. 1):310 (Abstr.).
  55. Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.
  56. Rose, A. H. 1987. Responses to the chemical environment. In: The Yeasts (Ed. A. H. Rose and J. S. Harrisson) Vol. 2, Academic Press, London (1987), pp. 5-40.
  57. Roos, T. B., V. C. Tabeleão, L. A. Dümmer, E. Schwegler, M. A. Goulart, S. V. Moura, M. N. Corrêa, F. P. L. Leite and C. Gil- Turnes. 2010. Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food Agric. Immunol. 21:113-118. https://doi.org/10.1080/09540100903443691
  58. Sanders, M. E., L. Morelli and T. A. Tompkins. 2003. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr. Rev. Food Sci. Food Saf. 2:101-110. https://doi.org/10.1111/j.1541-4337.2003.tb00017.x
  59. Silva, M., N. V. Jacobus, C. Deneke and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231-1233. https://doi.org/10.1128/AAC.31.8.1231
  60. Stein, D. R., D. T. Allen, E. B. Perry, J. C. Bruner, K. W. Gates, T. G. Rehberger, K. Mertz, D. Jones and L. J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 89:111-125. https://doi.org/10.3168/jds.S0022-0302(06)72074-4
  61. Swinney-Floyd, D., B. A. Gardiner, F. N. Owens and T. Rehberger. 1999. Effects of inoculation with either Propionibacterium strain P-63 alone or in combination with Lactobacillus acidophilus strain LA53545 on performance of feedlot cattle. J. Anim. Sci. 77 (Suppl.):77 (Abstr.).
  62. Tamate, H., A. D. McGilliard, N. L. Jacobson and R. Getty. 1961. Effect of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408-420.
  63. Yoon, I. K. and M. D. Stern. 1995. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review. Asian-Aust. J. Anim. Sci. 8:533-555. https://doi.org/10.5713/ajas.1995.553
  64. Wehnes, C., K. Novak, V. Patskevich, D. Shields, J. Coalson, A. Smith, M. Davis and T. Rehberger. 2009. Benefits of supplementation of an electrolyte scour treatment with a bacillus-based direct-fed microbial for calves. Probiotics Antimicrob. Proteins 1:36-44. https://doi.org/10.1007/s12602-008-9004-5
  65. Weiss, W. P., D. J. Wyatt and T. R. McKelvey. 2008. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 91:646-652. https://doi.org/10.3168/jds.2007-0693

피인용 문헌

  1. Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World vol.7, pp.5, 2012, https://doi.org/10.1371/journal.pone.0035748
  2. Ruminal Acidosis in Feedlot: From Aetiology to Prevention vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/702572
  3. Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14517
  4. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept vol.4, pp.1, 2014, https://doi.org/10.1186/s13568-014-0064-5
  5. Effects of Direct-fed Microbial and Pine Cone Extract on Carcass Traits and Meat Quality of Hanwoo (Korean Native Cattle) vol.29, pp.5, 2015, https://doi.org/10.5713/ajas.15.0303
  6. fermentation of cereal straws vol.87, pp.1, 2015, https://doi.org/10.1111/asj.12346
  7. Physically adjusted neutral detergent fiber system for lactating dairy cow rations. II: Development of feeding recommendations vol.100, pp.12, 2017, https://doi.org/10.3168/jds.2017-12766
  8. Nutritive Value, in vitro Fermentation Characteristics and Nutrient Digestibility of Agro-industrial Byproducts-based Complete Feed Block Enriched with Mixed Microbes vol.16, pp.6, 2017, https://doi.org/10.3923/pjn.2017.470.476
  9. Nutritional and microbiological quality of bovine colostrum samples in Brazil vol.46, pp.1, 2017, https://doi.org/10.1590/s1806-92902017000100011
  10. L28 Isolated from Ground Beef vol.5, pp.39, 2017, https://doi.org/10.1128/genomeA.00955-17
  11. Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05376-z
  12. Sugarcane Bagasse as the Potential Agro-Waste Resource for the Immobilization of Lactobacillus rhamnosus NRRL 442 vol.1043, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1043.214
  13. Effects of Selected Lactobacillus plantarum as Probiotic on In vitro Ruminal Fermentation and Microbial Population vol.17, pp.3, 2018, https://doi.org/10.3923/pjn.2018.131.139
  14. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170255
  15. Animal performance and nutrient digestibility of feedlot steers fed a diet supplemented with a mixture of direct-fed microbials and digestive enzymes vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720170121
  16. Combination of Xylanase and Bacillus Direct-fed Microbials, as an Alternative to Antibiotic Growth Promoters, Improves Live Performance and Gut Health in Subclinical Challenged Broilers vol.17, pp.8, 2018, https://doi.org/10.3923/ijps.2018.362.366
  17. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1213-9
  18. Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep vol.31, pp.3, 2018, https://doi.org/10.5713/ajas.17.0654
  19. Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle vol.97, pp.11, 2014, https://doi.org/10.3168/jds.2014-8248
  20. Effects of direct-fed Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed conversion, and health condition of pre- and postpartum Holstein cows vol.98, pp.9, 2015, https://doi.org/10.3168/jds.2015-9512
  21. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00057
  22. Integrating 16S rRNA Sequencing and LC–MS-Based Metabolomics to Evaluate the Effects of Live Yeast on Rumen Function in Beef Cattle vol.9, pp.1, 2019, https://doi.org/10.3390/ani9010028
  23. Effect of Fumarate Reducing Bacteria on In Vitro Rumen Fermentation, Methane Mitigation and Microbial Diversity vol.52, pp.2, 2010, https://doi.org/10.1007/s12275-014-3518-1
  24. In vitro modulation of rumen microbiota and fermentation by native microorganisms isolated from the rumen of a fed-exclusively-on-pasture bovine vol.65, pp.4, 2015, https://doi.org/10.1007/s13213-015-1077-2
  25. Direct-Fed Microbial: Beneficial Applications, Modes of Action and Prospects as a Safe Tool for Enhancing Ruminant Production and Safeguarding Health vol.12, pp.3, 2010, https://doi.org/10.3923/ijp.2016.220.231
  26. In vitro Nutrient Digestibility and Fermentation Characteristics of King Grass Combined with Concentrate-Containing Mixed Microbes vol.15, pp.8, 2010, https://doi.org/10.3923/pjn.2016.784.788
  27. 혼합 생균제 급여가 거세한우의 성장, 혈액성상 및 육질에 미치는 영향 vol.26, pp.8, 2010, https://doi.org/10.5322/jesi.2017.26.8.967
  28. Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation vol.8, pp.12, 2010, https://doi.org/10.3390/ani8120235
  29. Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-46076-0
  30. Performance and feed efficiency of beef cattle fed high energy diet with probiotic consortium technology vol.20, pp.None, 2010, https://doi.org/10.1590/s1519-9940200182019
  31. A Systematic Approach to Identify and Characterize the Effectiveness and Safety of Novel Probiotic Strains to Control Foodborne Pathogens vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.01108
  32. The Effect of Probiotics on High Fiber Diet in Rumen Fermentation Characteristics vol.251, pp.None, 2010, https://doi.org/10.1088/1755-1315/251/1/012057
  33. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants vol.61, pp.3, 2010, https://doi.org/10.5187/jast.2019.61.3.122
  34. Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs vol.15, pp.None, 2010, https://doi.org/10.1186/s12917-019-2064-9
  35. Manipulating the rumen microbiome to address challenges facing Australasian dairy farming vol.60, pp.1, 2010, https://doi.org/10.1071/an18611
  36. Oral administration of lactate producing bacteria alone or combined with Saccharomyces cerevisiae and Megasphaera elsdenii on performance of fattening lambs vol.48, pp.1, 2010, https://doi.org/10.1080/09712119.2020.1773830
  37. Dynamic role of single‐celled fungi in ruminal microbial ecology and activities vol.128, pp.4, 2020, https://doi.org/10.1111/jam.14427
  38. Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage vol.158, pp.4, 2010, https://doi.org/10.1017/s0021859620000611
  39. Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers vol.33, pp.7, 2010, https://doi.org/10.5713/ajas.19.0785
  40. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs vol.31, pp.4, 2010, https://doi.org/10.1080/10495398.2019.1604380
  41. Conjugated linoleic acid producing potential of lactobacilli isolated from goat (AXB) rumen fluid samples vol.33, pp.8, 2010, https://doi.org/10.5713/ajas.19.0080
  42. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans vol.12, pp.3, 2020, https://doi.org/10.1007/s12602-019-09570-5
  43. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro vol.69, pp.3, 2010, https://doi.org/10.1080/09064702.2020.1737215
  44. Effects of microbial feed additives on feed utilization and growth performance in growing Barki lambs fed diet based on peanut hay vol.31, pp.5, 2020, https://doi.org/10.1080/10495398.2019.1616554
  45. Enhancing the Utilization of Palm Leaf Hay Using Bacillus subtilis and Phanerochaete chrysosporium in the Diet of Lambs Under Desert Conditions vol.20, pp.4, 2010, https://doi.org/10.2478/aoas-2020-0052
  46. Using Lactic Acid Bacteria as Silage Inoculants or Direct-Fed Microbials to Improve In Vitro Degradability and Reduce Methane Emissions in Dairy Cows vol.10, pp.10, 2010, https://doi.org/10.3390/agronomy10101482
  47. Probiotic powder production for cattle by using response surface methodology vol.591, pp.None, 2010, https://doi.org/10.1088/1755-1315/591/1/012028
  48. The Novel Solution for Acid Whey Permeate Application in Animal Feeding vol.44, pp.339, 2020, https://doi.org/10.2478/plua-2020-0011
  49. Effects of the supplementation of a calcium soap containing medium‐chain fatty acids on the fecal microbiota of pigs, lactating cows, and calves vol.92, pp.1, 2010, https://doi.org/10.1111/asj.13636
  50. Supplemental effect of Chaya (Cnidoscolus aconitifolius) leaf pellet on rumen fermentation, nutrients digestibility and microbial protein synthesis in growing crossbred bulls vol.20, pp.1, 2010, https://doi.org/10.1080/1828051x.2021.1880978
  51. Antagonistic properties and biocompatibility as important principles for development of effective and biosafety probiotic drugs vol.663, pp.1, 2010, https://doi.org/10.1088/1755-1315/663/1/012008
  52. Evaluating the effects of Lactobacillus animalis and Propionibacterium freudenreichii on performance and rumen and fecal measures in lactating dairy cows vol.104, pp.4, 2021, https://doi.org/10.3168/jds.2020-19291
  53. Effects of dietary microbial feed supplement on production efficacy in lactating dairy cows vol.2, pp.3, 2010, https://doi.org/10.3168/jdsc.2020-0002
  54. Optimization of medium composition for probiotic powder inoculum using the response surface methodology vol.788, pp.1, 2010, https://doi.org/10.1088/1755-1315/788/1/012038
  55. Effect of mixed live yeast and lactic acid bacteria on in vitro fermentation with varying media pH using a high-grain or high-forage diet vol.101, pp.2, 2021, https://doi.org/10.1139/cjas-2020-0138
  56. Alteration of cofactor specificity of the acrylyl-CoA reductase from Escherichia coli vol.43, pp.7, 2021, https://doi.org/10.1007/s10529-021-03130-0
  57. Influence of three microbial feed additives of Megasphaera elsdenii, Saccharomyces cerevisiae and Lactobacillus sp. on ruminal methane and carbon dioxide production, and biofermentation kinetics vol.131, pp.2, 2010, https://doi.org/10.1111/jam.14990
  58. Prebiotics, probiotics and postbiotics for sustainable poultry production vol.77, pp.4, 2021, https://doi.org/10.1080/00439339.2021.1960234
  59. Lactobacillus plantarum as feed additive to improvement in vitro ruminal biofermentation and digestibility of some tropical tree leaves vol.131, pp.6, 2010, https://doi.org/10.1111/jam.15129
  60. Pellets Inoculated with Bacillus amyloliquefaciens H57 Modulates Diet Preference and Rumen Factors Associated with Appetite Regulation in Steers vol.11, pp.12, 2021, https://doi.org/10.3390/ani11123455