DOI QR코드

DOI QR Code

Selection of Peptides Binding to HCV E2 and Inhibiting Viral Infectivity

  • Hong, Hye-Won (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Lee, Seong-Wook (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Myung, Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • Received : 2010.07.19
  • Accepted : 2010.09.06
  • Published : 2010.12.28

Abstract

The envelope glycoprotein E2 of hepatitis C virus (HCV) binds to various cell surface receptors for viral infection. We performed biopanning against this protein and selected peptides from phage display peptide libraries. Two short peptides, pep7-1 and pep12-1, were selected and their ability to inhibit the infection process was investigated. When pep7-1 was present, the infectivity of HCV particles in cell culture was notably decreased. This decrease was demonstrated by Western blot analysis, immunofluorescence assay, and reverse transcription PCR assay. However, pep12-1 showed little inhibitory effect on HCV infection.

Keywords

References

  1. Benedicto, I., F. Molina-Jimenez, B. Bartosch, F. L. Cosset, D. Lavillette, J. Prieto, et al. 2009. The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J. Virol. 83: 8012-8020. https://doi.org/10.1128/JVI.00038-09
  2. Blanchard, E., S. Belouzard, L. Goueslain, T. Wakita, J. Dubuisson, C. Wychowski, and Y. Rouille. 2006. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80: 6964-6972. https://doi.org/10.1128/JVI.00024-06
  3. Evans, M. J., T. von Hahn, D. M. Tscherne, A. J. Syder, M. Panis, B. Wolk, et al. 2007. Claudin-1 is a hepatitis C virus coreceptor required for a late step in entry. Nature 446: 801-805. https://doi.org/10.1038/nature05654
  4. Helle, F. and J. Dubuisson. 2008. Hepatitis C virus entry into host cells. Cell Mol. Life Sci. 65: 100-112. https://doi.org/10.1007/s00018-007-7291-8
  5. Higginbottom, A., E. R. Quinn, C. C. Kuo, M. Flint, L. H. Wilson, E. Bianchi, et al. 2000. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J. Virol. 74: 3642-3649. https://doi.org/10.1128/JVI.74.8.3642-3649.2000
  6. Johansson, D. X., C. Voisset, A. W. Tarr, M. Aung, J. K. Ball, J. Dubuisson, and M. A. A. Persson. 2007. Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proc. Natl. Acad. Sci. USA. 104: 16269-16274. https://doi.org/10.1073/pnas.0705522104
  7. Kato, T., T. Date, M. Miyamoto, A. Furusaka, K. Tokushige, M. Mizokami, and T. Wakita. 2003. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125: 1808-1817. https://doi.org/10.1053/j.gastro.2003.09.023
  8. Pileri, P., Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, et al. 1998. Binding of hepatitis C virus to CD81. Science 282: 938-941. https://doi.org/10.1126/science.282.5390.938
  9. Rosenberg, S. 2001. Recent advances in the molecular biology of hepatitis C virus. J. Mol. Biol. 313: 451-464. https://doi.org/10.1006/jmbi.2001.5055
  10. Scarselli, E., H. Ansuini, R. Cerino, R. M. Roccasecca, S. Acali, G. Filocamo, et al. 2002. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21: 5017-5025. https://doi.org/10.1093/emboj/cdf529
  11. Wakita, T., T. Pietschmann, T. Kato, T. Date, M. Miyamoto, Z. Zhao, et al. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11: 791-796. https://doi.org/10.1038/nm1268
  12. Wasley, A. and M. J. Alter. 2000. Epidemiology of hepatitis C: Geographic differences and temporal trends. Semin. Liver Dis. 20: 1-16. https://doi.org/10.1055/s-2000-9506
  13. Xiong, S., J. Fan, and K. Kitazato. 2010. The antiviral protein cyanovirin-N: The current state of its production and applications. Appl. Microbiol. Biotechnol. 86: 805-812. https://doi.org/10.1007/s00253-010-2470-1
  14. Zeisel, M. B., G. Koutsoudakis, E. K. Schnober, A. Haberstroh, H. E. Blum, F. L. Cosset, et al. 2007. Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46: 1722-1731. https://doi.org/10.1002/hep.21994
  15. Zhong, J., P. Gastaminza, G. Cheng, S. Kapadia, T. Kato, D. R. Burton, et al. 2005. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA. 102: 9294-9299. https://doi.org/10.1073/pnas.0503596102

Cited by

  1. Phage Display of Combinatorial Peptide Libraries: Application to Antiviral Research vol.16, pp.5, 2010, https://doi.org/10.3390/molecules16053499
  2. Antiviral activity of phage display selected peptides against Porcine reproductive and respiratory syndrome virus in vitro vol.432, pp.1, 2010, https://doi.org/10.1016/j.virol.2012.05.010
  3. Identification of chondrocyte‐binding peptides by phage display vol.31, pp.7, 2013, https://doi.org/10.1002/jor.22325
  4. Peptides as the next generation of anti-infectives vol.5, pp.3, 2010, https://doi.org/10.4155/fmc.12.213
  5. Identification of peptides that bind hepatitis C virus envelope protein E2 and inhibit viral cellular entry from a phage-display peptide library vol.33, pp.5, 2014, https://doi.org/10.3892/ijmm.2014.1670
  6. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2 vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/1827341