DOI QR코드

DOI QR Code

Gibberellin-Producing Endophytic Fungi Isolated from Monochoria vaginalis

  • Received : 2010.05.11
  • Accepted : 2010.08.21
  • Published : 2010.12.28

Abstract

The role of endophytic fungi in plant growth and development is well documented. However, endophytic fungi with growth promotion capacity have never been isolated from weeds previously. In the current study, we isolated 8 fungal endophytes from the roots of Monochoria vaginalis, a serious weed of rice paddy in Korea. These isolates were screened on Waito-C, in order to identify plant growth promoting metabolites. Two fungal isolates (M5.A & M1.5) significantly promoted the plant height and shoot length of Waito-C during preliminary screening experiments. The culture filtrates (CFs) of M5.A and M1.5 also promoted the shoot length of Echinocloa crusgalli. Gibberellins (GAs) analysis of the CFs of M5.A and M1.5 showed that these endophytic fungi secrete higher quantities of GAs as compared with wild-type G. fujikuroi KCCM12329. The CF of M5.A contained bioactive GAs ($GA_3$, 2.8 ng/ml; $GA_4$, 2.6 ng/ml, and $GA_7$, 6.68 ng/ml) in conjunction with physiologically inactive $GA_9$ (1.61 ng/ml) and $GA_{24}$ (0.18 ng/ml). The CF of M1.5 contained physiologically active GAs ($GA_3$, 1.64 ng/ml; $GA_4$, 1.37 ng/ml and $GA_7$, 6.29 ng/ml) in conjunction with physiologically inactive $GA_9$ (3.44 ng/ml), $GA_{12}$ (0.3 ng/ml), and $GA_{24}$ (0.59 ng/ml). M5.A and M1.5 were identified as new strains of Penicillium sp. and Aspergillus sp., respectively, based on their 18S rDNA sequence homology and phylogenetic analysis.

Keywords

References

  1. Alexopoulos, C., C. Mims, and M. Blackwell. 1996. Introductory Mycology. Wiley & Sons, Inc., New York.
  2. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon, and J. G. Kim. 2005. Isolation of gibberellins producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22-28.
  3. Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60. https://doi.org/10.1021/np9604893
  4. Davies, P. J. 2004. Regulatory factors in hormone action: Level, location and signal transduction, pp. 16-35. In P. J. Davies (ed.). Plant Hormones: Biosynthesis, Signal Transduction, Action. Kluwer, Dordrecht.
  5. Franck, C., J. Lammertyn, and B. Nicolaï. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
  6. Frisvad, J. C. and D. Filtenborg. 1989. Terverticillate penicilia: Chemotaxonomy and mycotoxin production. Mycologia 81: 837-861. https://doi.org/10.2307/3760103
  7. Greenberger, P. A. 2002. Allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol. 110: 685-692. https://doi.org/10.1067/mai.2002.130179
  8. Hamayun, M., S. A. Khan, A. L. Khan, G. Rehman, E. Y. Sohn, S. K. Kim, G. J. Joo, and I. J. Lee. 2009. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol. 19: 1244-1249. https://doi.org/10.4014/jmb.0901.030
  9. Hamayun, M., S. A. Khan, I. Iqbal, Y. H. Hwang, D. H. Shin, E. Y. Sohn, B. H. Lee, C. I. Na, and I. J. Lee. 2009. Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J. Microbiol. 47: 425-430. https://doi.org/10.1007/s12275-009-0268-6
  10. Hasan, H. A. H. 2002. Gibberellin and auxin production by plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101-106.
  11. Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
  12. Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
  13. MacMillan, J. 2000. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.
  14. Malinowski, D. P. and D. P. Belesky. 1999. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 22: 835-853. https://doi.org/10.1080/01904169909365675
  15. Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant-three way symbioses required for thermal tolerance, Science 315: 513-515. https://doi.org/10.1126/science.1136237
  16. Martin, G. C. 1983. In A. Crozier (ed.). The Biochemistry and Physiology of Gibberellins, Vol 2, pp. 395-444. Praeger, New York.
  17. Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206.
  18. Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48. https://doi.org/10.1016/S0960-9822(00)00292-X
  19. Pitt, J. I. 1998. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde NSW.
  20. Step, J. R. 2004. The role of weeds as sources of pharmaceuticals. J. Ethnopharmacol. 92: 163-166. https://doi.org/10.1016/j.jep.2004.03.002
  21. Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the Pharmaceutical Society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533. https://doi.org/10.1248/jhs.49.531
  22. Takahashi, N., B. O. Phinney, and J. MacMillan. 1991. Gibberellins. Springer, New York.
  23. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  24. Tarafdar, J. C. and H. Marschner. 1995. Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173: 97-102. https://doi.org/10.1007/BF00155522
  25. Tarafdar, J. C., A. V. Rao, and K. Bala. 1998. Production of phosphatases by fungi isolated from desert soils. Folia Microbiol. 33: 453-457.
  26. Tsavkelova, E. A., C. Bomke, A. I. Netrusov, J. Weiner, and B. Tudzynski. 2008. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet. Biol. 45: 1393-1403. https://doi.org/10.1016/j.fgb.2008.07.011
  27. Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol. 7: 65. https://doi.org/10.1186/1471-2229-7-65
  28. Waterhouse, D. F. 1993. Prospects for biological control of paddy weeds in Southeast Asia and some recent successes in the biological control of aquatic weeds. Food and Fertilizer Technology Center, Extension Bulletin, 366, Taipei, Taiwan.
  29. Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50. https://doi.org/10.1007/BF02463974
  30. Zou, W. X. and R. X. Tan. 1999. Advances in Plant Science, Vol. 2, pp. 183-190. China Higher Education Press, Beijing.

Cited by

  1. Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L vol.21, pp.9, 2011, https://doi.org/10.4014/jmb.1103.03012
  2. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2010, https://doi.org/10.1007/s13199-014-0273-3
  3. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.00906
  4. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils vol.13, pp.11, 2010, https://doi.org/10.1371/journal.pone.0208150
  5. Synthesis of Biologically Active Gibberellins GA4 and GA7 by Microorganisms vol.81, pp.2, 2019, https://doi.org/10.15407/microbiolj81.02.090
  6. Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions vol.9, pp.12, 2010, https://doi.org/10.3390/agronomy9120779
  7. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2010, https://doi.org/10.1007/s13205-020-2081-1
  8. Diversity and Plant Growth Promotion of Fungal Endophytes in Five Halophytes from the Buan Salt Marsh vol.31, pp.3, 2010, https://doi.org/10.4014/jmb.2012.12041