DOI QR코드

DOI QR Code

Assessment of Salinity-Induced Antioxidative Defense System of Diazotrophic Cyanobacterium Nostoc muscorum

  • Received : 2010.05.26
  • Accepted : 2010.07.24
  • Published : 2010.11.28

Abstract

The present study examined the salinity-induced oxidative damage and differential response of enzymatic and nonenzymatic antioxidants of Nostoc muscorum. As compared with carotenoid content that showed induction, the chlorophyll and phycocyanin contents were inhibited after salt stress. Acceleration of lipid peroxidation and peroxide production suggested the onset of oxidative damage. The activities of all studied enzymatic antioxidants were significantly increased by salt stress, with maximum induction occuring with superoxide dismutase (154.8% at 200 mM NaCl treatment). Interestingly, under severe stress condition (250 mM NaCl), ascorbate peroxidase seemed to be more crucial than catalase for peroxide scavenging. Among the studied nonenzymatic antioxidants, ${\alpha}$-tocopherol was induced maximally (56.0%); however, ascorbate and reduced glutathione were increased by only 8.9% after 250 mM NaCl treatment as compared with control cells. Therefore, salinity was found to induce the antioxidative defense system of N. muscorum.

Keywords

References

  1. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121- 126. Anderson, M. E. 1985. Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol. 113: 548-555.
  2. Bhargava, P., Y. Mishra, A. K. Srivastava, O. P. Narayan, and L. C. Rai. 2008. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: A proteomic assessment of its survival strategy. Photosynth. Res. 96: 61-74. https://doi.org/10.1007/s11120-007-9285-7
  3. Bradford, M. M. 1972. A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principle of protein dye binding. Anal. Biochem. 72: 248-254.
  4. Cakmak, I. and J. Horst. 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83: 463-468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
  5. Canini, A., D. Leonardi, and M. G. Caiola. 2001. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after surface bloom formation. New Phytol. 152: 107-116 https://doi.org/10.1046/j.0028-646x.2001.00244.x
  6. Erdmann, N. and M. Hagemann. 2001. Salt acclimation of algae and cyanobacteria: A comparison, pp. 323-362. In L. C. Rai and J. P. Gaur (eds.). Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanism. Springer-Verlag Berlin, Germany.
  7. Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant 92: 696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  8. Gerloff, G. C., G. P. Fitzgerald, and F. Skoog. 1950. The isolation, purification and culture of blue-green algae. Am. J. Bot. 37: 216-218. https://doi.org/10.2307/2437904
  9. Giannopolitis, C. N. and S. K. Ries. 1977. Superoxide dismutase 1. Occurrence in higher plants. Plant Physiol. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  10. Giannopolitis, C. N. and S. K. Ries. 1977. Superoxide dismutase 1. Occurrence in higher plants. Plant Physiol. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  11. Halliwell, B. and J. M. C. Gutteridge. 1989. Free Radicals in Biology and Medicine. Oxford Clarendon Press.
  12. Keller, T. and H. Schawger. 1997. Air pollution and ascorbic acid. Eur. J. Forest Pathol. 7: 338-350.
  13. Kim, K. H., N. Dashdorj, H. Zhang, J. Yan, W. A. Carmer, and S. Savikhin. 2005. An anomalous distance dependence of intraprotein chlorophyll carotenoid triplet energy transfer. Biophys. J. Biophys. Lett. 89: L28-L30.
  14. Lu, C. and J. Zhang. 2000. Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J. Exp. Bot. 51: 911-917. https://doi.org/10.1093/jexbot/51.346.911
  15. Mittler, R. and E. Tel-Or. 1991. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC 7942. Free Radic. Res. Commun. 12-13: 845-850.
  16. Munné-Bosch, S., K. Schwarz, and L. Alegre. 1999. Enhanced formation of tocopherol and highly oxidized abietane diterpenes in water-stressed Rosemary plants. Plant Physiol. 121: 1047-1052. https://doi.org/10.1104/pp.121.3.1047
  17. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
  18. Rajendran, U. M., E. Kathirvel, and N. Anand. 2007. Desiccationinduced changes in antioxidant enzymes, fatty acids, and amino acids in the cyanobacterium Tolypothrix scytonemoides. World J. Microbiol. Biotechnol. 23: 251-257. https://doi.org/10.1007/s11274-006-9221-6
  19. Sagisaka, S. 1976. The occurrence of peroxide in perennial plant Populas gebrica. Plant Physiol. 57: 308-309. https://doi.org/10.1104/pp.57.2.308
  20. Sattler, S. E., E. B. Cahoon, S. J. Coughlan, and D. DellaPenna. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184-2195. https://doi.org/10.1104/pp.103.024257
  21. Schaedle, M. and J. A. Bassham. 1977. Chloroplasts glutathione reductase. Plant Physiol. 59: 1011-1012. https://doi.org/10.1104/pp.59.5.1011
  22. Schmidt, A. and K. J. Kunert. 1986. Lipid peroxidation in higher plants, the role of glutathione reductase. Plant Physiol. 82: 700-702. https://doi.org/10.1104/pp.82.3.700
  23. Singh, D. P. and K. Kshatriya. 2002. NaCl-induced oxidative damage in the cyanobacterium Anabaena doliolum. Curr. Microbiol. 44: 411-417. https://doi.org/10.1007/s00284-001-0009-5
  24. Singh, R. N. 1961. Role of Blue-Green Algae in the Nitrogen Economy of Indian Agriculture. ICAR, New Delhi.
  25. Srivastava, A. K., P. Bhargava, A. Kumar, L. C. Rai, and B. A. Neilan. 2009. Molecular characterization and effect of salinity on cyanobacterial community from rice fields of Eastern Uttar Pradesh, India. Saline Sys. 5: 4. https://doi.org/10.1186/1746-1448-5-4
  26. Srivastava, A. K., P. Bhargava, Y. Mishra, B. Shukla, and L. C. Rai. 2006. Effect of salt, copper and temperature pretreatment on ultraviolet-B-induced antioxidants in diazotrophic cyanobacterium Anabaena doliolum. J. Basic Microbiol. 42: 135-144.
  27. Srivastava, A. K., P. Bhargava, and L. C. Rai. 2005. Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. World J. Microbiol. Biotechnol. 22: 1291-1298.
  28. Srivastava, A. K., P. Bhargava, R. Thapar, and L. C. Rai. 2008. A physiological and proteomic analysis of salinity induced changes in Anabaena doliolum. Environ. Exp. Bot. 64: 49-57. https://doi.org/10.1016/j.envexpbot.2007.12.012
  29. Tang, D., S. Shi, D. Li, C. Hu, and Y. Liu. 2007. Physiological and biochemical responses of Scytonema javanicum (cyanobacteria) to salt stress. J. Arid Environ. 71: 312-320. https://doi.org/10.1016/j.jaridenv.2007.05.004
  30. Tel-Or, E., M. Huflejt, and L. Packer. 1985. The role of glutathione and ascorbate in hydroperoxide removal in cyanobacteria. Biochem. Biophys. Res. Commun. 132: 533-539. https://doi.org/10.1016/0006-291X(85)91166-0
  31. Thapar, R., A. K. Srivastava, P. Bhargava, Y. Mishra, and L. C. Rai. 2008. Impact of different abiotic stresses on the physiological processes of wild and copper acclimated Anabaena doliolum. J. Plant Physiol. 165: 306-316. https://doi.org/10.1016/j.jplph.2007.05.002
  32. Twiner, M. J. and C. G. Trick. 2000. Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo. J. Plankt. Res. 22: 1961-1975. https://doi.org/10.1093/plankt/22.10.1961
  33. Tyagi, R., A. Kumar, M. B. Tyagi, P. N. Jha, H. D. Kumar, R. P. Sinha, and D. P. Häder. 2003. Protective role of certain chemicals against UV-B-induced damage in the nitrogen-fixing cyanobacterium, Nostoc muscorum. J. Basic Microbiol. 43: 137-147. https://doi.org/10.1002/jobm.200390014
  34. Vranova, E., D. Inze, and F. V. Breusegem. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227- 1236. https://doi.org/10.1093/jexbot/53.372.1227
  35. Yang, Y., S. Xu, L. An, and N. Chen. 2007. NADPH oxidasedependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol. 164: 1429-1435. https://doi.org/10.1016/j.jplph.2006.08.009
  36. Zutshi, S., M. Choudhary, N. Bharat, M. Z. Abdin, and T. Fatma. 2008. Evaluation of antioxidant defense responses to lead stress in Hapalosiphon fontinalis-339. J. Phycol. 44: 889- 896. https://doi.org/10.1111/j.1529-8817.2008.00542.x

Cited by

  1. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure vol.23, pp.None, 2010, https://doi.org/10.3402/mehd.v23i0.14787
  2. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon vol.6, pp.None, 2010, https://doi.org/10.3389/fmicb.2015.01393
  3. A Less Saline Baltic Sea Promotes Cyanobacterial Growth, Hampers Intracellular Microcystin Production, and Leads to Strain-Specific Differences in Allelopathy vol.10, pp.6, 2010, https://doi.org/10.1371/journal.pone.0128904
  4. Proteogenomics of a saxitoxin‐producing and non‐toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion vol.18, pp.2, 2010, https://doi.org/10.1111/1462-2920.13131
  5. Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria) vol.101, pp.9, 2010, https://doi.org/10.1007/s00253-017-8130-y
  6. Salinity-induced modulations in the protective defense system and programmed cell death in Nostoc muscorum vol.64, pp.6, 2010, https://doi.org/10.1134/s1021443717060097
  7. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock vol.9, pp.12, 2019, https://doi.org/10.3390/metabo9120297
  8. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria vol.168, pp.None, 2010, https://doi.org/10.1016/j.plaphy.2021.09.037