DOI QR코드

DOI QR Code

Effect of Transgenic Rhizobacteria Overexpressing Citrobacter braakii appA on Phytate-P Availability to Mung Bean Plants

  • Patel, Kuldeep J. (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Vig, Saurabh (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Nareshkumar, G. (Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Archana, G. (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda)
  • Received : 2010.06.09
  • Accepted : 2010.08.12
  • Published : 2010.11.28

Abstract

Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-phosphorus (P) available to plants. In the present study, the Citrobacter braakii phytase gene (appA) was overexpressed in rhizobacteria possessing plant growth promoting (PGP) traits, for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broadhost-range expression vector pBBR1MCS-2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains), and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying levels of phytase activity, ranging from 10-folds to 538-folds higher than the corresponding control strains. The transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed the highest expression of phytase (~8 U/mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having the ability to secrete organic acid showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA overexpressing rhizobacteria showed increased P content, and dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semisolid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of the overexpression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.

Keywords

References

  1. Cho, J., C. Lee, S. Kang, H. Lee, J. Bok, J. Woo, Y. Moon, and Y. Choi. 2005. Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Curr. Microbiol. 51: 11-15. https://doi.org/10.1007/s00284-005-4482-0
  2. De Werra, P., E. Baehler, A. Huser, C. Keel, and M. Maurhofer. 2008. Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl. Environ. Microbiol. 74: 1339-1349. https://doi.org/10.1128/AEM.02126-07
  3. Duffy, B. K. and G. Defago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429-2438.
  4. Geetha, R., A. J. Desai, and G. Archana. 2009. Effect of the expression of Escherichia coli fhuA gene in Rhizobium sp. IC3123 and ST1 in planta: Its role in increased nodule occupancy and function in pigeon pea. Appl. Soil Ecol. 43: 185-190. https://doi.org/10.1016/j.apsoil.2009.07.005
  5. George, T. S., A. E. Richardson, S. S. Li, P. J. Gregory, and T. J. Daniell. 2009. Extracellular release of a heterologous phytase from roots of transgenic plants: Does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiol. Ecol. 70: 433-445 https://doi.org/10.1111/j.1574-6941.2009.00762.x
  6. George, T. S., R. J. Simpons, P. J. Gregory, and A. E. Richardson. 2007. Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol. Biochem. 39: 793- 803. https://doi.org/10.1016/j.soilbio.2006.09.029
  7. Giaveno, C., L. Celi, A. E. Richardson, R. J. Simpson, and E. Barberis. 2010. Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol. Biochem. 42: 491-498. https://doi.org/10.1016/j.soilbio.2009.12.002
  8. Greaves, M. P. and D. M. Webley. 1965. A study of the breakdown of organic phosphates by micro-organisms from the root region of certain pasture grasses. J. Appl. Biotechnol. 28: 454-465.
  9. Greiner, R. 2007. Phytate-degrading enzymes: Regulation of synthesis in microorganisms and plants, pp. 78-96. In B. L. Turner, A. E. Richardson, and E. J. Mullaney (eds.). Inositol Phosphates Linking Agriculture and the Environment. CABI Publishing, Wallingford.
  10. Gyaneshwar, P., L. J. Parekh, G. Archana, P. S. Poole, M. D. Collins, R. A. Hutson, and G. Naresh Kumar. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171: 223-229. https://doi.org/10.1111/j.1574-6968.1999.tb13436.x
  11. Hayes, J. E., A. E. Richardson, and R. J. Simpson. 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust. J. Plant. Physiol. 26: 801-809. https://doi.org/10.1071/PP99065
  12. Heinonen, J. K. and R. J. Lahti. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113: 313-317. https://doi.org/10.1016/0003-2697(81)90082-8
  13. Jorquera, M., O. Martinez, F. Maruyama, P. Marshner, and M. L. Mora. 2008. Current and future biotechnology applications of bacterial phytases and phytase-producing bacteria. Microbes Environ. 23: 182-191. https://doi.org/10.1264/jsme2.23.182
  14. Kim, H. W., Y. O. Kim, J. H. Lee, K. K. Kim, and Y. J. Kim. 2003. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol. Lett. 25: 1231- 1234. https://doi.org/10.1023/A:1025020309596
  15. Kim, Y. O., H. W. Kim, J. H. Lee, K. K. Kim, and S. J. Lee. 2006. Molecular cloning of the phytase gene from Citrobacter braakii and its expression in Saccharomyces cerevisiae. Biotechnol. Lett. 28: 33-38. https://doi.org/10.1007/s10529-005-9684-9
  16. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop II, and K. M. Peterson. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  17. Labes, M., A. Puhler, and R. Simon. 1990. A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram negative bacteria. Gene 89: 37-46. https://doi.org/10.1016/0378-1119(90)90203-4
  18. Li, G., S. Yang, M. Li, Y. Qiao, and J. Wang. 2009. Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol. Lett. 31: 1297-1303. https://doi.org/10.1007/s10529-009-9992-6
  19. Lim, B. L., P. Yeung, C. Cheng, and J. E. Hill. 2007. Distribution and diversity of phytate-mineralizing bacteria. ISME J. 1: 321-330.
  20. Lung, S. and B. L. Lim. 2006. Assimilation of phytatephosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant Soil 258: 1-13.
  21. Molina, L., C. Ramos, E. Duque, M. C. Ronchel, J. M. Garcola, L. Wyke, and J. L. Ramos. 2000. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol. Biochem. 32: 315-321. https://doi.org/10.1016/S0038-0717(99)00156-X
  22. Mullaney, E. J. and A. H. L. Ullah. 2007. Phytase: Attributes, catalytic mechanisms and applications, pp. 97-110. In B. L. Turner, A. E. Richardson, and E. J. Mullaney (eds.). Inositol Phosphates Linking Agriculture and the Environment. CABI Publishing, Wallingford.
  23. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Ognalaga, M. E. and F. T. Frossard. 1994. Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Sci. Soc. Am. J. 58: 332-337. https://doi.org/10.2136/sssaj1994.03615995005800020011x
  25. Patel, D. K., G. Archana, and G. Nareshkumar. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56: 168-174. https://doi.org/10.1007/s00284-007-9053-0
  26. Patel, K. J., A. K. Singh, G. Nareshkumar, and G. Archana. 2010. Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl. Soil Ecol. 44: 252-261. https://doi.org/10.1016/j.apsoil.2010.01.002
  27. Rajendran, G., S. Mistry, A. J. Desai, and G. Archana. 2007. Functional expression of Escherichia coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of $Fe^{3+}$ferrichrome as iron source. Arch. Microbiol. 187: 257-264. https://doi.org/10.1007/s00203-006-0191-8
  28. Ramos-Gonzalez, M. I., M. J. Campos, and J. L. Ramos. 2005. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: In vivo expression technology capture and identification of root-activated promoters. J. Bacteriol. 187: 4033-4041. https://doi.org/10.1128/JB.187.12.4033-4041.2005
  29. Richardson, A. E., P. A. Hadobas, and J. E. Hayes. 2000. Acid phosphomonoesterases and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ. 23: 397-405. https://doi.org/10.1046/j.1365-3040.2000.00557.x
  30. Richardson, A. E. and P. A. Hadobas. 1997. Soil isolates of Pseudomonas sp. that utilize inositol phosphates. Can. J. Microbiol. 43: 509-516. https://doi.org/10.1139/m97-073
  31. Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential application for improving plant growth-promoting bacteria. Plant Soil 287: 15-21. https://doi.org/10.1007/s11104-006-9056-9
  32. Rodriguez, H., T. Gonzalez, I. Goire, and Y. Bashan. 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91: 552-555. https://doi.org/10.1007/s00114-004-0566-0
  33. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  34. Sharma, V., G. Archana, and G. Naresh Kumar. 2010. Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate solubilizing rhizospheric bacterium Enterobacter asburiae PSI3 under P limited conditions. Microbiol. Res. [doi:10.1016/j.micres.2010.01.008]
  35. Sharma, V., V. Kumar, G. Archana, and G. Naresh Kumar. 2005. Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Can. J. Microbiol. 51: 477- 482. https://doi.org/10.1139/w05-032
  36. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology. 1: 784- 791. https://doi.org/10.1038/nbt1183-784
  37. Tang, J., A. Leung, C. Leung, and B. L. Lim. 2006. Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol. Biochem. 38: 1316-1324. https://doi.org/10.1016/j.soilbio.2005.08.021
  38. Turner, B. L., M. J. Paphazy, P. M. Haygarth, and I. D. McKelvie. 2002. Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B 357: 449-469. https://doi.org/10.1098/rstb.2001.0837
  39. Unno, Y., K. Okubo, T. S. Wasaki, and M. Osaki. 2005. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lipin analysed by phytate utilization ability. Environ. Microbiol. 7: 396-404. https://doi.org/10.1111/j.1462-2920.2004.00701.x
  40. Vohra, A. and T. Satyanarayana. 2003. Phytases: Microbial sources, production, purification, and potential biotechnological application. Crit. Rev. Biotechnol. 23: 29-60. https://doi.org/10.1080/713609297
  41. Young, J. M. 2003. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination 'Sinorhizobium adhaerens' (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int. J. Syst. Evol. Microbiol. 53: 2107-2110.

Cited by

  1. Phytases: crystal structures, protein engineering and potential biotechnological applications vol.112, pp.1, 2010, https://doi.org/10.1111/j.1365-2672.2011.05181.x
  2. Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine vol.29, pp.11, 2010, https://doi.org/10.1007/s11274-013-1384-3
  3. Identification of Novel Phytase Genes from an Agricultural Soil-Derived Metagenome vol.24, pp.1, 2010, https://doi.org/10.4014/jmb.1307.07007
  4. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols vol.9, pp.4, 2010, https://doi.org/10.1371/journal.pone.0092400
  5. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum vol.61, pp.12, 2010, https://doi.org/10.1139/cjm-2015-0206
  6. Ensifer meliloti overexpressing Escherichia coli phytase gene (appA) improves phosphorus (P) acquisition in maize plants vol.103, pp.9, 2010, https://doi.org/10.1007/s00114-016-1400-1
  7. Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste vol.124, pp.5, 2010, https://doi.org/10.1016/j.jbiosc.2017.05.016
  8. Engineered Root Bacteria Release Plant-Available Phosphate from Phytate vol.85, pp.18, 2010, https://doi.org/10.1128/aem.01210-19
  9. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes vol.96, pp.6, 2010, https://doi.org/10.1111/brv.12779