DOI QR코드

DOI QR Code

Identification of Three Positive Regulators in the Geldanamycin PKS Gene Cluster of Streptomyces hygroscopicus JCM4427

  • Kim, Won-Cheol (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Jung-Joon (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Paik, Sang-Gi (Chungnam National University) ;
  • Hong, Young-Soo (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2010.05.27
  • Accepted : 2010.08.09
  • Published : 2010.11.28

Abstract

In the Streptomyces hygroscopicus JCM4427 geldanamycin biosynthetic gene cluster, five putative regulatory genes were identified by protein homology searching. Among those genes, gel14, gel17, and gel19 are located downstream of polyketide synthase genes. Gel14 and Gel17 are members of the LAL family of transcriptional regulators, including an ATP/GTP-binding domain at the N-terminus and a DNA-binding helix-turn-helix domain at the C-terminus. Gel19 is a member of the TetR family of transcriptional regulators, which generally act to repress transcription. To verify the biological significance of the putative regulators in geldanamycin production, they were individually characterized by gene disruption, genetic complementation, and transcriptional analyses. All three genes were confirmed as positive regulators of geldanamycin production. Specifically, Gel17 and Gel19 are required for gel14 as well as gelA gene expression.

Keywords

References

  1. Ahn, S. K., K. Tahlan, Z. Yu, and J. Nodwell. 2007. Investigation of transcription repression and small-molecule responsiveness by TetR-like transcription factors using a heterologous Escherichia coli-based assay. J. Bacteriol. 189: 6655-6664. https://doi.org/10.1128/JB.00717-07
  2. Bibb, M. J. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215. https://doi.org/10.1016/j.mib.2005.02.016
  3. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  4. De Schrijver, A. and R. De Mot. 1999. A subfamily of MalTrelated ATP-dependent regulators in the LuxR family. Microbiology 145: 1287-1288. https://doi.org/10.1099/13500872-145-6-1287
  5. Denis, F. and R. Brzezinski. 1991. An improved aminoglycoside resistance gene cassette for use in Gram-negative bacteria and Streptomyces. FEMS Microbiol. Lett. 81: 261-264. https://doi.org/10.1111/j.1574-6968.1991.tb04769.x
  6. Guilfoile, P. G. and C. R. Hutchinson. 1992. The Streptomyces glaucescens TcmR protein represses transcription of the divergently oriented tcmR and tcmA genes by binding to an intergenic operator region. J. Bacteriol. 174: 3659-3666.
  7. He, W., J. Lei, Y. Liu, and Y. Wang. 2008. The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch. Microbiol. 189: 501-510. https://doi.org/10.1007/s00203-007-0346-2
  8. He, W., L. Wu, Q. Gao, Y. Du, and Y. Wang. 2006. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr. Microbiol. 52: 197-203. https://doi.org/10.1007/s00284-005-0203-y
  9. Henikoff, S., J. C. Wallace, and J. P. Brown. 1990. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183: 111-132. https://doi.org/10.1016/0076-6879(90)83009-X
  10. Hinrichs, W., C. Kisker, M. Duvel, A. Muller, K. Tovar, W. Hillen, and W. Saenger. 1994. Structure of the Tet repressortetracycline complex and regulation of antibiotic resistance. Science 264: 418-420. https://doi.org/10.1126/science.8153629
  11. Hong, Y.-S., D. Lee, W. Kim, J. K. Jeong, C. G. Kim, J. K. Sohng, J. H. Lee, S. G. Paik, and J. J. Lee. 2004. Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. J. Am. Chem. Soc. 126: 11142-11143. https://doi.org/10.1021/ja047769m
  12. Hopwood, D. W., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, et al. 1985. Genetic Manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich, UK.
  13. Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S.-K. Hong, K. Miyake, and T. Beppu. 1990. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor $A_{3}$(2). Gene 95: 49-56. https://doi.org/10.1016/0378-1119(90)90412-K
  14. Hur, Y. A., S. S. Choi, D. H. Sherman, and E. S. Kim. 2008. Identification of TmcN as a pathway-specific positive regulator of tautomycetin biosynthesis in Streptomyces sp. $CK_{4412}$. Microbiology 154: 2912-2919. https://doi.org/10.1099/mic.0.2008/018903-0
  15. Kim, W. 2008. Engineered Biosynthesis and identification of regulaory genes in geldanamycin biosynthesis. Ph. D. Thesis. Chungnam National University, Daejeon.
  16. Kitani, S., H. Ikeda, T. Sakamoto, S. Noguchi, and T. Nihira. 2009. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl. Microbiol. Biotechnol. 82: 1089-1096. https://doi.org/10.1007/s00253-008-1850-2
  17. Knirschova, R., R. Novakova, L. Feckova, J. Timko, J. Turna, J. Bistakova, and J. Kormanec. 2007. Multiple regulatory genes in the salinomycin biosynthetic gene cluster of Streptomyces albus $CCM _{4719}$. Folia Microbiol. (Praha) 52: 359-365. https://doi.org/10.1007/BF02932090
  18. Kuscer, E., N. Coates, I. Challis, M. Gregory, B. Wilkinson, R. Sheridan, and H. Petkovic. 2007. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J. Bacteriol. 189: 4756-4763. https://doi.org/10.1128/JB.00129-07
  19. Le, T. B., H. P. Fiedler, C. D. den Hengst, S. K. Ahn, A. Maxwell, and M. J. Buttner. 2009. Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol. Microbiol. 72: 1462-1474. https://doi.org/10.1111/j.1365-2958.2009.06735.x
  20. Neckers, L. and Y. S. Lee. 2003. Cancer: The rules of attraction. Nature 425: 357-359. https://doi.org/10.1038/425357a
  21. Orth, P., D. Schnappinger, W. Hillen, W. Saenger, and W. Hinrichs. 2000. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7: 215-219. https://doi.org/10.1038/73324
  22. Park, U.-M., J.-W. Suh, and S.-K. Hong. 2000. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 10: 169-175.
  23. Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan, and R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
  24. Rascher, A., Z. Hu, N. Viswanathan, A. Schirmer, R. Reid, W. C. Nierman, M. Lewis, and C. R. Hutchinson. 2003. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol. Lett. 218: 223-230. https://doi.org/10.1016/S0378-1097(02)01148-5
  25. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  26. Sheldon, P. J., S. B. Busarow, and C. R. Hutchinson. 2002. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol. Microbiol. 44: 449-460. https://doi.org/10.1046/j.1365-2958.2002.02886.x
  27. Shin, J. C., Z. Na, D. H. Lee, W. C. Kim, K. Lee, Y. M. Shen, S. G. Paik, Y.-S. Hong, and J. J. Lee. 2008. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus $JCM_{4427}$. J. Microbiol. Biotechnol. 18: 1101-1108.
  28. Uguru, G. C., K. E. Stephens, J. A. Stead, J. E. Towle, S. Baumberg, and K. J. McDowall. 2005. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150. https://doi.org/10.1111/j.1365-2958.2005.04817.x
  29. Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951.
  30. Wilson, D. J., Y. Xue, K. A. Reynolds, and D. H. Sherman. 2001. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol. 183: 3468-3475. https://doi.org/10.1128/JB.183.11.3468-3475.2001

Cited by

  1. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506) vol.98, pp.2, 2010, https://doi.org/10.1007/s00253-013-5362-3
  2. An overview on transcriptional regulators in Streptomyces vol.1849, pp.8, 2010, https://doi.org/10.1016/j.bbagrm.2015.06.007
  3. GdmRIII, a TetR Family Transcriptional Regulator, Controls Geldanamycin and Elaiophylin Biosynthesis in Streptomyces autolyticus CGMCC0516 vol.7, pp.None, 2010, https://doi.org/10.1038/s41598-017-05073-x
  4. Improved production of antifungal angucycline Sch47554 by manipulating three regulatory genes inStreptomycessp. SCC‐2136 vol.66, pp.4, 2019, https://doi.org/10.1002/bab.1748
  5. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP vol.8, pp.3, 2019, https://doi.org/10.3390/antibiotics8030087
  6. Construction and application of a “superplasmid” for enhanced production of antibiotics vol.104, pp.4, 2010, https://doi.org/10.1007/s00253-019-10283-6