DOI QR코드

DOI QR Code

Biodegradation of Di-n-Butyl Phthalate by Rhodococcus sp. JDC-11 and Molecular Detection of 3,4-Phthalate Dioxygenase Gene

  • Jin, De-Cai (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University) ;
  • Liang, Ren-Xing (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University) ;
  • Dai, Qin-Yun (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University) ;
  • Zhang, Rui-Yong (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University) ;
  • Wu, Xue-Ling (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University) ;
  • Chao, Wei-Liang (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
  • Received : 2010.04.22
  • Accepted : 2010.07.06
  • Published : 2010.10.28

Abstract

Rhodococcus sp. JDC-11, capable of utilizing di-n-butyl phthalate (DBP) as the sole source of carbon and energy, was isolated from sewage sludge and confirmed mainly based on 16S rRNA gene sequence analysis. The optimum pH, temperature, and agitation rate for DBP degradation by Rhodococcus sp. JDC-11 were 8.0, $30^{\circ}C$, and 175 rpm, respectively. In addition, low concentrations of glucose were found to inhibit the degradation of DBP, whereas high concentrations of glucose increased its degradation. Meanwhile, a substrate utilization test showed that JDC-11 was also able to utilize other phthalates. The major metabolites of DBP degradation were identified as monobutyl phthalate and phthalic acid by gas chromatography-mass spectrometry, allowing speculation on the tentative metabolic pathway of DBP degradation by Rhodococcus sp. JDC-11. Using a set of new degenerate primers, a partial sequence of the 3,4-phthalate dioxygenase gene was obtained from JDC-11. Moreover, a sequence analysis revealed that the phthalate dioxygenase gene of JDC-11 was highly homologous to the large subunit of the phthalate dioxygenase from Rhodococcus coprophilus strain G9.

Keywords

References

  1. Chang, B. V., C. M. Yang, C. H. Cheng, and S. Y. Yuan. 2004. Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55: 533-538. https://doi.org/10.1016/j.chemosphere.2003.11.057
  2. Chang, H. K. and G. J. Zylstra. 1998. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J. Bacteriol. 180: 6529-6537.
  3. Chao, W. L., C. M. Lin, I. I. Shiung, and Y. L. Kuo. 2006. Degradation of dibutyl-phthalate by soil bacteria. Chemosphere 63: 1377-1383. https://doi.org/10.1016/j.chemosphere.2005.09.021
  4. Choi, K. Y., D. Kim, W. J. Sul, J. C. Chae, G. J. Zylstra, Y. M. Kim, and E. Kim. 2005. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 252: 207-213. https://doi.org/10.1016/j.femsle.2005.08.045
  5. Eaton, R. W. 2001. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol. 183: 3689-3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001
  6. Fuller, M. E. and J. F. Manning. 2004. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresour. Technol. 91: 123-133. https://doi.org/10.1016/S0960-8524(03)00180-9
  7. Habe, H., M. Miyakoshi, J. Chung, K. Kasuga, T. Yoshida, H. Nojiri, and T. Omori. 2003. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl. Microbiol. Biotechnol. 61: 44-54. https://doi.org/10.1007/s00253-002-1166-6
  8. Jackson, M. A., D. P. Labeda, and L. A. Becker. 1996. Isolation of bacteria and fungi for the hydrolysis of phthalate and terephthalate esters. J. Ind. Microbiol. 16: 301-304. https://doi.org/10.1007/BF01570038
  9. Kapanen, A., J. R. Stephen, J. Bruggemann, and A. Kiviranta. 2007. Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community. Chemosphere 67: 2201-2209. https://doi.org/10.1016/j.chemosphere.2006.12.023
  10. Kim, Y. H., J. Min, K. D. Bae, M. B. Gu, and J. Lee. 2005. Biodegradation of dipropyl phthalate and toxicity of its degradation products: A comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch. Microbiol. 184: 25-31. https://doi.org/10.1007/s00203-005-0026-z
  11. Kurane, R. 1997. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers. Ann. NY Acad. Sci. 829: 118-134. https://doi.org/10.1111/j.1749-6632.1997.tb48570.x
  12. Li, J., J. Chen, Q. Zhao, X. Li, and W. Shu. 2006. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65: 1627-1633. https://doi.org/10.1016/j.chemosphere.2006.03.005
  13. Liang, D. W., T. Zhang. H. Fang, and J. Z. He. 2008. Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. 80: 183-198. https://doi.org/10.1007/s00253-008-1548-5
  14. Martínkova, L., B. Uhnakova, M. Patek, J. Nesvera, and V. K en. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35: 162-177. https://doi.org/10.1016/j.envint.2008.07.018
  15. Matsumoto, M., M. Hirata-Koizumi, and M. Ema. 2008. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul. Toxicol. Pharm. 50: 37-49. https://doi.org/10.1016/j.yrtph.2007.09.004
  16. Nalli, S., D. G. Cooper, and J. A. Nicell. 2002. Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation 13: 343-352. https://doi.org/10.1023/A:1022313810852
  17. Patil, N. K., R. Kundapur, Y. S. Shouche, and T. B. Karegoudar. 2006. Degradation of a plasticizer, di-n-butylphthalate, by Delfia sp. TBKNP-05. Curr. Microbiol. 52: 369-374. https://doi.org/10.1007/s00284-005-5258-2
  18. Roslev, P., K. Vorkamp, J. Aarup, K. Frederiksen, and P. H. Nielsen. 2007. Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res. 41: 969-976. https://doi.org/10.1016/j.watres.2006.11.049
  19. Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. Adams. 1997. The environmental fate of phthalate esters: A literature review. Chemosphere 35: 667-749. https://doi.org/10.1016/S0045-6535(97)00195-1
  20. Stingley, R. L., B. Brezna, A. A. Khan, and C. E. Cerniglia. 2004. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150: 3749-3756. https://doi.org/10.1099/mic.0.27263-0
  21. Wang, J., L. Chen, H. Shi, and Y. Qian. 2000. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41: 1245-1248. https://doi.org/10.1016/S0045-6535(99)00552-4
  22. Xu, X. R., J. D. Gu, H. B. Li, and X. Y. Li. 2005. Kinetics of di-n-butyl phthalate degradation by a bacterium isolated from mangrove sediment. J. Microbiol. Biotechnol. 15: 946-951.
  23. Zeng, F., K. Cui, X. Li, J. Fu, and G. Sheng. 2004. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process. Biochem. 39: 1125-1129. https://doi.org/10.1016/S0032-9592(03)00226-7

Cited by

  1. Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence vol.65, pp.6, 2010, https://doi.org/10.1016/j.ibiod.2011.05.005
  2. Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain vol.47, pp.6, 2010, https://doi.org/10.1016/j.procbio.2012.02.027
  3. Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: Genetic identification and degradation kinetics vol.221, pp.None, 2010, https://doi.org/10.1016/j.jhazmat.2012.04.010
  4. Biodegradation of Di- n -Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. vol.14, pp.12, 2010, https://doi.org/10.3390/ijms141224046
  5. Biodegradation of di- n -Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater vol.12, pp.10, 2010, https://doi.org/10.3390/ijerph121013510
  6. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12 vol.17, pp.7, 2010, https://doi.org/10.3390/ijms17071012
  7. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway vol.6, pp.2, 2016, https://doi.org/10.1007/s13205-016-0524-5
  8. Complete genome sequence of a phthalic acid esters degrading Mycobacterium sp. YC-RL4 vol.48, pp.4, 2010, https://doi.org/10.1016/j.bjm.2016.09.022
  9. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F vol.15, pp.None, 2010, https://doi.org/10.1016/j.btre.2017.04.002
  10. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil vol.25, pp.18, 2010, https://doi.org/10.1007/s11356-018-1862-0
  11. Whole Cell Actinobacteria as Biocatalysts vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00077
  12. The phyllosphere indigenous microbiota of Brassica campestris L. change its diversity in responding to di-n-butyl phthalate pollution vol.35, pp.2, 2010, https://doi.org/10.1007/s11274-019-2589-x
  13. Human exposure risk to semivolatile organic compounds via soil in automobile workshops in Awka, South Eastern, Nigeria vol.26, pp.16, 2010, https://doi.org/10.1007/s11356-019-04981-x
  14. Biodegradation of Structurally Diverse Phthalate Esters by a Newly Identified Esterase with Catalytic Activity toward Di(2-ethylhexyl) Phthalate vol.67, pp.31, 2019, https://doi.org/10.1021/acs.jafc.9b02655
  15. Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in Arthrobacter sp. ZJUTW vol.117, pp.12, 2020, https://doi.org/10.1002/bit.27524