References
- Chang, B. V., C. M. Yang, C. H. Cheng, and S. Y. Yuan. 2004. Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55: 533-538. https://doi.org/10.1016/j.chemosphere.2003.11.057
- Chang, H. K. and G. J. Zylstra. 1998. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J. Bacteriol. 180: 6529-6537.
- Chao, W. L., C. M. Lin, I. I. Shiung, and Y. L. Kuo. 2006. Degradation of dibutyl-phthalate by soil bacteria. Chemosphere 63: 1377-1383. https://doi.org/10.1016/j.chemosphere.2005.09.021
- Choi, K. Y., D. Kim, W. J. Sul, J. C. Chae, G. J. Zylstra, Y. M. Kim, and E. Kim. 2005. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 252: 207-213. https://doi.org/10.1016/j.femsle.2005.08.045
- Eaton, R. W. 2001. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol. 183: 3689-3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001
- Fuller, M. E. and J. F. Manning. 2004. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresour. Technol. 91: 123-133. https://doi.org/10.1016/S0960-8524(03)00180-9
- Habe, H., M. Miyakoshi, J. Chung, K. Kasuga, T. Yoshida, H. Nojiri, and T. Omori. 2003. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl. Microbiol. Biotechnol. 61: 44-54. https://doi.org/10.1007/s00253-002-1166-6
- Jackson, M. A., D. P. Labeda, and L. A. Becker. 1996. Isolation of bacteria and fungi for the hydrolysis of phthalate and terephthalate esters. J. Ind. Microbiol. 16: 301-304. https://doi.org/10.1007/BF01570038
- Kapanen, A., J. R. Stephen, J. Bruggemann, and A. Kiviranta. 2007. Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community. Chemosphere 67: 2201-2209. https://doi.org/10.1016/j.chemosphere.2006.12.023
- Kim, Y. H., J. Min, K. D. Bae, M. B. Gu, and J. Lee. 2005. Biodegradation of dipropyl phthalate and toxicity of its degradation products: A comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch. Microbiol. 184: 25-31. https://doi.org/10.1007/s00203-005-0026-z
- Kurane, R. 1997. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers. Ann. NY Acad. Sci. 829: 118-134. https://doi.org/10.1111/j.1749-6632.1997.tb48570.x
- Li, J., J. Chen, Q. Zhao, X. Li, and W. Shu. 2006. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65: 1627-1633. https://doi.org/10.1016/j.chemosphere.2006.03.005
- Liang, D. W., T. Zhang. H. Fang, and J. Z. He. 2008. Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. 80: 183-198. https://doi.org/10.1007/s00253-008-1548-5
- Martínkova, L., B. Uhnakova, M. Patek, J. Nesvera, and V. K en. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35: 162-177. https://doi.org/10.1016/j.envint.2008.07.018
- Matsumoto, M., M. Hirata-Koizumi, and M. Ema. 2008. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul. Toxicol. Pharm. 50: 37-49. https://doi.org/10.1016/j.yrtph.2007.09.004
- Nalli, S., D. G. Cooper, and J. A. Nicell. 2002. Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation 13: 343-352. https://doi.org/10.1023/A:1022313810852
- Patil, N. K., R. Kundapur, Y. S. Shouche, and T. B. Karegoudar. 2006. Degradation of a plasticizer, di-n-butylphthalate, by Delfia sp. TBKNP-05. Curr. Microbiol. 52: 369-374. https://doi.org/10.1007/s00284-005-5258-2
- Roslev, P., K. Vorkamp, J. Aarup, K. Frederiksen, and P. H. Nielsen. 2007. Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res. 41: 969-976. https://doi.org/10.1016/j.watres.2006.11.049
- Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. Adams. 1997. The environmental fate of phthalate esters: A literature review. Chemosphere 35: 667-749. https://doi.org/10.1016/S0045-6535(97)00195-1
- Stingley, R. L., B. Brezna, A. A. Khan, and C. E. Cerniglia. 2004. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150: 3749-3756. https://doi.org/10.1099/mic.0.27263-0
- Wang, J., L. Chen, H. Shi, and Y. Qian. 2000. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41: 1245-1248. https://doi.org/10.1016/S0045-6535(99)00552-4
- Xu, X. R., J. D. Gu, H. B. Li, and X. Y. Li. 2005. Kinetics of di-n-butyl phthalate degradation by a bacterium isolated from mangrove sediment. J. Microbiol. Biotechnol. 15: 946-951.
- Zeng, F., K. Cui, X. Li, J. Fu, and G. Sheng. 2004. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process. Biochem. 39: 1125-1129. https://doi.org/10.1016/S0032-9592(03)00226-7
Cited by
- Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence vol.65, pp.6, 2010, https://doi.org/10.1016/j.ibiod.2011.05.005
- Biodegradation of di-n-butyl phthalate and expression of the 3,4-phthalate dioxygenase gene in Arthrobacter sp. ZH2 strain vol.47, pp.6, 2010, https://doi.org/10.1016/j.procbio.2012.02.027
- Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: Genetic identification and degradation kinetics vol.221, pp.None, 2010, https://doi.org/10.1016/j.jhazmat.2012.04.010
- Biodegradation of Di- n -Butyl Phthalate by a Newly Isolated Halotolerant Sphingobium sp. vol.14, pp.12, 2010, https://doi.org/10.3390/ijms141224046
- Biodegradation of di- n -Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater vol.12, pp.10, 2010, https://doi.org/10.3390/ijerph121013510
- Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12 vol.17, pp.7, 2010, https://doi.org/10.3390/ijms17071012
- Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway vol.6, pp.2, 2016, https://doi.org/10.1007/s13205-016-0524-5
- Complete genome sequence of a phthalic acid esters degrading Mycobacterium sp. YC-RL4 vol.48, pp.4, 2010, https://doi.org/10.1016/j.bjm.2016.09.022
- Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F vol.15, pp.None, 2010, https://doi.org/10.1016/j.btre.2017.04.002
- Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil vol.25, pp.18, 2010, https://doi.org/10.1007/s11356-018-1862-0
- Whole Cell Actinobacteria as Biocatalysts vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00077
- The phyllosphere indigenous microbiota of Brassica campestris L. change its diversity in responding to di-n-butyl phthalate pollution vol.35, pp.2, 2010, https://doi.org/10.1007/s11274-019-2589-x
- Human exposure risk to semivolatile organic compounds via soil in automobile workshops in Awka, South Eastern, Nigeria vol.26, pp.16, 2010, https://doi.org/10.1007/s11356-019-04981-x
- Biodegradation of Structurally Diverse Phthalate Esters by a Newly Identified Esterase with Catalytic Activity toward Di(2-ethylhexyl) Phthalate vol.67, pp.31, 2019, https://doi.org/10.1021/acs.jafc.9b02655
- Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in Arthrobacter sp. ZJUTW vol.117, pp.12, 2020, https://doi.org/10.1002/bit.27524