References
- Akiyoshi, K., Y. Sasaki, and J. Sunamoto. 1999. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate Chem. 10: 321-324. https://doi.org/10.1021/bc9801272
- Astafieva, I., X. F. Zhong, and A. Eisenberg. 1993. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26: 7339-7352. https://doi.org/10.1021/ma00078a034
- Cavalieri, F., E. Chiessi, and G. Paradossi. 2007. Chaperone-like activity of nanoparticles of hydrophobized poly(vinyl alcohol). Soft Mater. 3: 718-724 https://doi.org/10.1039/b618779j
- Clark, E. D. B. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157-163. https://doi.org/10.1016/S0958-1669(98)80109-2
- Cleland, J. L., C. Hedgepeth, and D. I. C. Wang. 1992. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. J. Biol. Chem. 267: 13327-13334.
- Dutta, P., S. Shrivastava, and J. Dey. 2009. Amphiphilic polymer nanoparticles: Characterization and assessment as new drug carriers. Macromol. Biosci. 9: 1116-1126. https://doi.org/10.1002/mabi.200900135
- Gerlsma, S. Y. 1968. Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. J. Biol. Chem. 243: 957-961.
- Hou, A. and Y. Shi. 2009. Polymerization and surface active properties of water-soluble amphiphilic polysiloxane copolymers modified with quaternary ammonium salts and long-carbon chain groups. Mater. Sci. Eng. B 163: 99-104. https://doi.org/10.1016/j.mseb.2009.05.014
-
Ishi-i, T., R. Iguchi, E. Snip, M. Ikeda, and S. Shinkai. 2001. Fullerene can reinforce the organogel structure of porphyrinappended cholesterol derivatives: Novel odd-even effect of the
$(CH_{2)n}$ spacer on the organogel stability. Langmuir 17: 5825-5833. https://doi.org/10.1021/la0107749 - Kim, M. S., K. S. Seo, G. Khang, and H. B. Lee. 2005. Preparation of a gradient biotinylated polyethylene surface to bind streptavidin-FITC. Bioconjugate Chem. 16: 245-249. https://doi.org/10.1021/bc049860l
-
Kim, T. W., T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al. 2007. Oral administration of high molecular mass
$poly-\gamma-glutamate $ induces NK cell-mediated antitumor immunity. J. Immun. 179: 775-780. https://doi.org/10.4049/jimmunol.179.2.775 -
Ko, Y. H. and R. A. Gross. 1998. Effects of glucose and glycerol on
$\gamma-poly(glutamic acid)$ formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 57: 430-437. https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4<430::AID-BIT6>3.0.CO;2-N -
Lee, E.-H., H. Uyama, O. H. Kwon, and M. H. Sung. 2009. Fabrication of ultrafine fibers of poly(
$\gamma-glutamic acid$ ) and its derivative by electrospinning. Polym. Bull. 63: 735-742. https://doi.org/10.1007/s00289-009-0112-5 -
Lee, E.-H., Y. Kamigaito, T. Tsujimoto, H. Uyama, S. Seki, S. Tagawa, and M. H. Sung. 2010. Preparation of poly(
$\gamma-glutamic acid$ ) hydrogel/apatite composites and their application for scaffold of cell proliferation. J. Soc. Fiber Sci. Technol. Jap. 66: 104-111. - Lee, T. Y., Y. H. Kim, S. W. Yoon, J. C. Choi, J. M. Yang, C. J. Kim, J. T. Schiller, M. H. Sung, and H. Poo. 2009. Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol. Immunother. 58: 1781-1794. https://doi.org/10.1007/s00262-009-0689-4
- Liu, X.-M., K. P. Pramoda, Y.-Y. Yang, S. Y. Chow, and C. He. 2004. Cholesteryl-grafted functional amphiphilic poly(Nisoproprylacrylamide- co-N-hydroxylmethylacrylamide): Synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25: 2619-2628. https://doi.org/10.1016/j.biomaterials.2003.09.028
-
Ohtani, Y., T. Irie, K. Uekama, K. Fukunaga, and J. Pitha. 1989. Differential effects of
$\alpha-, \beta- and \delta \gamma-cyclodextrins $ on human erythrocytes. Eur. J. Biochem. 186: 17-22. https://doi.org/10.1111/j.1432-1033.1989.tb15171.x - Okoshi, K., N. Sano, T. Okumura, A. Tagaya, J. Magoshi, Y. Koike, M. Fujiki, and J. Watanabe. 2003. The Christiansen effect of brightly colored colloidal dispersion with an amphiphilic polymer. J. Colloid Interface Sci. 263: 473-477. https://doi.org/10.1016/S0021-9797(03)00336-9
- Ooya, T., K. M. Huh, M. Saitoh, E. Tamiya, and K. Park. 2005. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Technol. Adv. Mat. 6: 452-456. https://doi.org/10.1016/j.stam.2005.01.006
-
Park, C., Y. H. Choi, H. J. Shin, H. Poo, J. J. Song, C. J. Kim, and M. H. Sung. 2005. Effect of high-molecular-weight
$poly-\gamma- glutamic$ acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal adsorption. J. Microbiol. Biotechnol. 15: 855-858. - Pocker, Y. and D. R. Storm. 1968. The catalytic versatility of erythrocyte carbonic anhydrase. IV. Kinetic studies of enzymecatalyzed hydrolyses of p-nitrophenyl esters. Biochemistry 7: 1202-1214. https://doi.org/10.1021/bi00843a042
- Pocker, Y. and L. J. Guilbelt. 1972. Catalytic versatility of erythrocyte carbonic anhydrase. Kinetic studies of the enzymecatalyzed hydrolysis of methylpyridyl carbonates. Biochemistry 11: 180-190. https://doi.org/10.1021/bi00752a007
- Richard, A. and A. Margaritis. 2001. Poly(glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21: 219-232. https://doi.org/10.1080/07388550108984171
-
Roelants, G. E. and J. W. Goodman. 1968. Immunochemical studies on the
$poly-\gamma-D-glutamyl $ capsule of Bacillus anthracis. IV. The association with peritoneal exudate cell ribonucleic acid of the polypeptide in immunogenic and nonimmunogenic forms. Biochemistry 7: 1432-1440. https://doi.org/10.1021/bi00844a028 - Rozema, D. and S. H. Gellman. 1995. Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. J. Am. Chem. Soc. 117: 2373-2374. https://doi.org/10.1021/ja00113a036
-
Sung, M. H., C. Park, C. J. Kim, H. Poo, K. Soda, and M. Ashiuchi. 2005. Natural and edible biopolymer
$ poly-\gamma-glutamic $ acid: Synthesis, production, and applications. Chem. Rec. 5: 352-366. https://doi.org/10.1002/tcr.20061 -
Van de Manakker, F., M. Van der Pot, T. Vermonden, C. F. Van Nostrum, and W. E. Hennink. 2008. Self-assembling hydrogels based on
$\beta-cyclodextrin/cholesterol $ inclusion complexes. Macromolecules 41: 1766-1773. https://doi.org/10.1021/ma702607r - Wetlaufer, D. B. and Y. Xie. 1995. Control of aggregation in protein refolding: A variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 4: 1535-1543. https://doi.org/10.1002/pro.5560040811
Cited by
-
Bio-Derived Poly(
${\gamma}$ -Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1208.08031 -
Fabrication of Poly(
${\gamma}$ -glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application vol.23, pp.7, 2010, https://doi.org/10.4014/jmb.1302.02030 - An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins : Amphipathic Polymer for Membrane Proteins vol.23, pp.12, 2010, https://doi.org/10.1002/pro.2575
- pH-controlled degradation and thermal stability of a porous poly(γ-glutamic acid) monolith crosslinked with an oxazoline-functionalized polymer vol.99, pp.None, 2010, https://doi.org/10.1016/j.polymdegradstab.2013.11.019
- Evaluation of the novel near-infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/γ-glutamic acid complex for sentinel lymph node navigation surgery in large animal model vol.18, pp.1, 2010, https://doi.org/10.1007/s10120-014-0345-3
- Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs vol.11, pp.None, 2016, https://doi.org/10.2147/ijn.s117862