DOI QR코드

DOI QR Code

Synthesis of an Amphiphilic Poly(${\gamma}$-Glutamic Acid)-Cholesterol Conjugate and Its Application as an Artificial Chaperone

  • Lee, Eun-Hye (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Kamigaito, Yoshiki (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Tsujimoto, Takashi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Uyama, Hiroshi (Department of Applied Chemistry, Graduate School of Engineering, Osaka University) ;
  • Sung, Moon-Hee (Department of Bio & Nanochemistry, Kookmin University)
  • Received : 2010.06.03
  • Accepted : 2010.06.29
  • Published : 2010.10.28

Abstract

A poly(${\gamma}$-glutamic acid) (${\gamma}$PGA)-cholesterol conjugate was synthesized and its properties were then evaluated. The conjugate exhibited an amphiphilic nature derived from the hydrophilic ${\gamma}$PGA backbone and the hydrophobic cholesterol side chain. The conjugate spontaneously formed nanoparticles, becoming an aqueous solution when at low concentrations, and at high concentrations the result was the formation of a physical gel. By utilizing the self-aggregating properties of the conjugate in water, an artificial chaperone was developed. A complex of protein, with the nanoparticles of the conjugate, was formed and the protein was released upon the dissociation of the nanoparticles through the addition of ${\beta}$-cyclodextrin. For denatured carbonic anhydrase, the activity was recovered in the artificial chaperone of the nanoparticle conjugate.

Keywords

References

  1. Akiyoshi, K., Y. Sasaki, and J. Sunamoto. 1999. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate Chem. 10: 321-324. https://doi.org/10.1021/bc9801272
  2. Astafieva, I., X. F. Zhong, and A. Eisenberg. 1993. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26: 7339-7352. https://doi.org/10.1021/ma00078a034
  3. Cavalieri, F., E. Chiessi, and G. Paradossi. 2007. Chaperone-like activity of nanoparticles of hydrophobized poly(vinyl alcohol). Soft Mater. 3: 718-724 https://doi.org/10.1039/b618779j
  4. Clark, E. D. B. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157-163. https://doi.org/10.1016/S0958-1669(98)80109-2
  5. Cleland, J. L., C. Hedgepeth, and D. I. C. Wang. 1992. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. J. Biol. Chem. 267: 13327-13334.
  6. Dutta, P., S. Shrivastava, and J. Dey. 2009. Amphiphilic polymer nanoparticles: Characterization and assessment as new drug carriers. Macromol. Biosci. 9: 1116-1126. https://doi.org/10.1002/mabi.200900135
  7. Gerlsma, S. Y. 1968. Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. J. Biol. Chem. 243: 957-961.
  8. Hou, A. and Y. Shi. 2009. Polymerization and surface active properties of water-soluble amphiphilic polysiloxane copolymers modified with quaternary ammonium salts and long-carbon chain groups. Mater. Sci. Eng. B 163: 99-104. https://doi.org/10.1016/j.mseb.2009.05.014
  9. Ishi-i, T., R. Iguchi, E. Snip, M. Ikeda, and S. Shinkai. 2001. Fullerene can reinforce the organogel structure of porphyrinappended cholesterol derivatives: Novel odd-even effect of the $(CH_{2)n}$ spacer on the organogel stability. Langmuir 17: 5825-5833. https://doi.org/10.1021/la0107749
  10. Kim, M. S., K. S. Seo, G. Khang, and H. B. Lee. 2005. Preparation of a gradient biotinylated polyethylene surface to bind streptavidin-FITC. Bioconjugate Chem. 16: 245-249. https://doi.org/10.1021/bc049860l
  11. Kim, T. W., T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al. 2007. Oral administration of high molecular mass $poly-\gamma-glutamate $ induces NK cell-mediated antitumor immunity. J. Immun. 179: 775-780. https://doi.org/10.4049/jimmunol.179.2.775
  12. Ko, Y. H. and R. A. Gross. 1998. Effects of glucose and glycerol on $\gamma-poly(glutamic acid)$ formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 57: 430-437. https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4<430::AID-BIT6>3.0.CO;2-N
  13. Lee, E.-H., H. Uyama, O. H. Kwon, and M. H. Sung. 2009. Fabrication of ultrafine fibers of poly($\gamma-glutamic acid$) and its derivative by electrospinning. Polym. Bull. 63: 735-742. https://doi.org/10.1007/s00289-009-0112-5
  14. Lee, E.-H., Y. Kamigaito, T. Tsujimoto, H. Uyama, S. Seki, S. Tagawa, and M. H. Sung. 2010. Preparation of poly($\gamma-glutamic acid$) hydrogel/apatite composites and their application for scaffold of cell proliferation. J. Soc. Fiber Sci. Technol. Jap. 66: 104-111.
  15. Lee, T. Y., Y. H. Kim, S. W. Yoon, J. C. Choi, J. M. Yang, C. J. Kim, J. T. Schiller, M. H. Sung, and H. Poo. 2009. Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol. Immunother. 58: 1781-1794. https://doi.org/10.1007/s00262-009-0689-4
  16. Liu, X.-M., K. P. Pramoda, Y.-Y. Yang, S. Y. Chow, and C. He. 2004. Cholesteryl-grafted functional amphiphilic poly(Nisoproprylacrylamide- co-N-hydroxylmethylacrylamide): Synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials 25: 2619-2628. https://doi.org/10.1016/j.biomaterials.2003.09.028
  17. Ohtani, Y., T. Irie, K. Uekama, K. Fukunaga, and J. Pitha. 1989. Differential effects of $\alpha-, \beta- and \delta \gamma-cyclodextrins $on human erythrocytes. Eur. J. Biochem. 186: 17-22. https://doi.org/10.1111/j.1432-1033.1989.tb15171.x
  18. Okoshi, K., N. Sano, T. Okumura, A. Tagaya, J. Magoshi, Y. Koike, M. Fujiki, and J. Watanabe. 2003. The Christiansen effect of brightly colored colloidal dispersion with an amphiphilic polymer. J. Colloid Interface Sci. 263: 473-477. https://doi.org/10.1016/S0021-9797(03)00336-9
  19. Ooya, T., K. M. Huh, M. Saitoh, E. Tamiya, and K. Park. 2005. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Technol. Adv. Mat. 6: 452-456. https://doi.org/10.1016/j.stam.2005.01.006
  20. Park, C., Y. H. Choi, H. J. Shin, H. Poo, J. J. Song, C. J. Kim, and M. H. Sung. 2005. Effect of high-molecular-weight $poly-\gamma- glutamic$ acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal adsorption. J. Microbiol. Biotechnol. 15: 855-858.
  21. Pocker, Y. and D. R. Storm. 1968. The catalytic versatility of erythrocyte carbonic anhydrase. IV. Kinetic studies of enzymecatalyzed hydrolyses of p-nitrophenyl esters. Biochemistry 7: 1202-1214. https://doi.org/10.1021/bi00843a042
  22. Pocker, Y. and L. J. Guilbelt. 1972. Catalytic versatility of erythrocyte carbonic anhydrase. Kinetic studies of the enzymecatalyzed hydrolysis of methylpyridyl carbonates. Biochemistry 11: 180-190. https://doi.org/10.1021/bi00752a007
  23. Richard, A. and A. Margaritis. 2001. Poly(glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 21: 219-232. https://doi.org/10.1080/07388550108984171
  24. Roelants, G. E. and J. W. Goodman. 1968. Immunochemical studies on the $poly-\gamma-D-glutamyl $capsule of Bacillus anthracis. IV. The association with peritoneal exudate cell ribonucleic acid of the polypeptide in immunogenic and nonimmunogenic forms. Biochemistry 7: 1432-1440. https://doi.org/10.1021/bi00844a028
  25. Rozema, D. and S. H. Gellman. 1995. Artificial chaperones: Protein refolding via sequential use of detergent and cyclodextrin. J. Am. Chem. Soc. 117: 2373-2374. https://doi.org/10.1021/ja00113a036
  26. Sung, M. H., C. Park, C. J. Kim, H. Poo, K. Soda, and M. Ashiuchi. 2005. Natural and edible biopolymer$ poly-\gamma-glutamic $ acid: Synthesis, production, and applications. Chem. Rec. 5: 352-366. https://doi.org/10.1002/tcr.20061
  27. Van de Manakker, F., M. Van der Pot, T. Vermonden, C. F. Van Nostrum, and W. E. Hennink. 2008. Self-assembling hydrogels based on $\beta-cyclodextrin/cholesterol $ inclusion complexes. Macromolecules 41: 1766-1773. https://doi.org/10.1021/ma702607r
  28. Wetlaufer, D. B. and Y. Xie. 1995. Control of aggregation in protein refolding: A variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 4: 1535-1543. https://doi.org/10.1002/pro.5560040811

Cited by

  1. Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers vol.22, pp.12, 2010, https://doi.org/10.4014/jmb.1208.08031
  2. Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application vol.23, pp.7, 2010, https://doi.org/10.4014/jmb.1302.02030
  3. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins : Amphipathic Polymer for Membrane Proteins vol.23, pp.12, 2010, https://doi.org/10.1002/pro.2575
  4. pH-controlled degradation and thermal stability of a porous poly(γ-glutamic acid) monolith crosslinked with an oxazoline-functionalized polymer vol.99, pp.None, 2010, https://doi.org/10.1016/j.polymdegradstab.2013.11.019
  5. Evaluation of the novel near-infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/γ-glutamic acid complex for sentinel lymph node navigation surgery in large animal model vol.18, pp.1, 2010, https://doi.org/10.1007/s10120-014-0345-3
  6. Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs vol.11, pp.None, 2016, https://doi.org/10.2147/ijn.s117862