References
- Baldrian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
- Baraznenok, V. A., E. G. Becker, N. V. Ankudimova, and N. N. Okunev. 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb. Technol. 25: 651-659. https://doi.org/10.1016/S0141-0229(99)00091-5
- Bhat, M. K. and G. P. Hazlewood. 2001. Enzymology and other characteristics of cellulases and xylanases, pp. 11-57. In M. Bedford and G. Partridge (eds.). Enzymes in Farm Animal Nutrition. CAB International.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Bruins, M. E., A. E. Janssen, and R. M. Boom. 2001. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186 https://doi.org/10.1385/ABAB:90:2:155
- Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari. 1994. Application of xylanases in the pulp and paper industry. Bioresource Technol. 50: 65-72. https://doi.org/10.1016/0960-8524(94)90222-4
- Cheng, H. L., C. Y. Tsai, H. J. Chen, S. S. Yang, and Y. C. Chen. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU- 88. Appl. Microbiol. Biotechnol. 82: 681-689. https://doi.org/10.1007/s00253-008-1803-9
- Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Curotto, E., M. Concha, V. Campos, A. M. Milagres, and N. Duran. 1994. Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions. Appl. Biochem. Biotechnol. 48: 107-116. https://doi.org/10.1007/BF02796165
- de Vries, R. P. and J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
- Faulet, B. M., S. Niamke, J. T. Gonnety, and L. P. Kouamé. 2006. Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. African J. Biotechnol. 5: 273-282.
- Fujimoto, H., T. Ooi, S. L. Wang, T. Takizawa, H. Hidaka, S. Murao, and M. Arai. 1995. Purification and properties of three xylanases from Aspergillus aculeatus. Biosci. Biotech. Biochem. 59: 538-540. https://doi.org/10.1271/bbb.59.538
- Fujimoto, Z., S. Kaneko, A. Kuno, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279: 9606- 9614. https://doi.org/10.1074/jbc.M312293200
-
He, J., B. Yu, K. Zhang, X. Ding, and D. Chen. 2009. Expression of endo-1,
$4-\beta-xylanase $ from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9: 56. https://doi.org/10.1186/1472-6750-9-56 - Henrissat, B. and A. Bairoch. 1996. Updating the sequencebased classification of glycosyl hydrolases. J. Biochem. 316: 695-696. https://doi.org/10.1042/bj3160695
- Ito, S., A. Kuno, R. Suzuki, S. Kaneko, Y. Kawabana, I. Kusakabe, and T. Hasegawa. 2004. Rational affinity purification of native family 10 xylanase. J. Biotechnol. 110: 137-142. https://doi.org/10.1016/j.jbiotec.2004.01.014
- Jenkins, E. and A. V. Manohar. 1995. Chiral perturbation theory for vector mesons. Phys. Rev. Lett. 75: 2272-2275. https://doi.org/10.1103/PhysRevLett.75.2272
-
Katapodis, P., W. Nerinckx, M. Claeyssens, and P. Christakopoulos. 2006. Purification and characterization of a thermostable intracellular
$\beta-xylosidase $ from the thermophilic fungus Sporotrichum thermophile. Process Biochem. 41: 2402-2409. https://doi.org/10.1016/j.procbio.2006.06.021 - Kerem, Z., K. Jensen, and K. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54. https://doi.org/10.1016/S0014-5793(99)00180-5
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lee, J. W., K. S. Gwak, M. J. Park, D. H. Choi, M. Kown, and I. G. Choi. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol. 45: 485-491.
- Lee, J. W., J. Y. Park, M. Kwon, and I. G. Choi. 2009. Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J. Biosci. Bioeng. 107: 33-37. https://doi.org/10.1016/j.jbiosc.2008.09.006
- Lucena-Neto, A. S. and E. X. F. Filho. 2004. Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Brazilian J. Microbiol. 35: 86-90.
- Maheshwari, R., G. Bharadwaj, and M. Bhat. 2000. Thermophilic fungi: Their physiology and enzymes. J. Microbiol. Molec. Biol. Rev. 64: 461-488. https://doi.org/10.1128/MMBR.64.3.461-488.2000
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Morris, D. D., M. D. Gibbs, C. W. J. Chin, M. H. Koh, K. K. Y. Wong, R. W. Allison, P. J. Nelson, and P. L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64: 1759-1765.
- Ninawe, S., M. Kapoor, and R. C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258. https://doi.org/10.1016/j.biortech.2007.02.016
- Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. M. G. A. Fontes, L. M. A. Ferreira, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
- Polizeli, M. L., A. C.Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Minireview. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
-
Wakiyama, M., H. Tanaka, K. Yoshihara, S. Hayashi, and K. Ohta. 2008. Purification and properties of family-10 endo-1,
$4-\beta- xylanase $ from Penicillium citrinum and structural organization of the encoding gene. J. Biosci. Bioeng. 105: 367-374. https://doi.org/10.1263/jbb.105.367 - Wong, K. K. Y. and J. N. Saddler. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413- 435. https://doi.org/10.3109/07388559209114234
-
Yan, Q. J., L. Wang, Z. Q. Jiang, S. Q. Yang, H. F. Zhu, and L. T. Li. 2009. A xylose-tolerant
$\beta-xylosidase $ from Paecilomyces thermophila: Characterization and its co-action with the endogenous xylanase. Bioresource Technol. 99: 5402-5410. - Yu, E. K. C., L. U. L. Tan, M. K.-H. Chan, L. Deschatelets, and J. N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24. https://doi.org/10.1016/0141-0229(87)90044-5
- Zhou, C., J. Bai, S. Deng, J. Wang, J. Zhu, M. Wu, and W. Wang. 2008. Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour. Technol. 99: 831-838. https://doi.org/10.1016/j.biortech.2007.01.035
- Zolotnitsky, G., U. Cogan, N. Adir, V. Solomon, G. Shoham, and Y. Shoham. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. U.S.A. 101: 11275-11280. https://doi.org/10.1073/pnas.0404311101
Cited by
- Purification and partial characterisation of a thermostable xylanase from salt-tolerant Thermobifida halotolerans YIM 90462T vol.47, pp.2, 2010, https://doi.org/10.1016/j.procbio.2011.10.032
- Production, purification and characterisation of alkali stable xylanase from Cellulosimicrobium sp. MTCC 10645 vol.2, pp.3, 2010, https://doi.org/10.1016/s2221-1691(12)60496-1
- Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1 vol.22, pp.7, 2010, https://doi.org/10.4014/jmb.1110.10060
- Effect of Different Nutrient Components on Polysaccharide and Biomass Production from Fomitopsis pinicola Karst vol.503, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.503-504.174
- Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics vol.48, pp.None, 2010, https://doi.org/10.1016/j.soilbio.2012.01.011
- Homologous constitutive expression of Xyn III in Trichoderma reesei QM9414 and its characterization vol.59, pp.3, 2010, https://doi.org/10.1007/s12223-013-0288-9
- Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production vol.24, pp.4, 2014, https://doi.org/10.4014/jmb.1312.12072
- Screening of β‐Glucosidase and β‐Xylosidase Activities in Four Non‐Saccharomyces Yeast Isolates vol.80, pp.8, 2010, https://doi.org/10.1111/1750-3841.12954
- Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT vol.74, pp.9, 2010, https://doi.org/10.1007/s00284-017-1286-y
- Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars vol.182, pp.2, 2010, https://doi.org/10.1007/s12010-016-2364-5
- WOOD-DESTROYING PROPERTIES OF FOMITOPSIS PINICOLA (SW.) P. KARST. FROM MIDDLE SIBERIA vol.2018, pp.1, 2010, https://doi.org/10.14258/jcprm.2018012729
- Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach vol.12, pp.4, 2021, https://doi.org/10.1080/21501203.2021.1918277