DOI QR코드

DOI QR Code

Characterization of an O-Methyltransferase from Streptomyces avermitilis MA-4680

  • Yoon, Young-Dae (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Park, Young-Hee (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Yi, Yong-Sub (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Lee, Young-Shim (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Jo, Geun-Hyeong (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Park, Jun-Cheol (National Institute of Animal Science, Rural Development Administration) ;
  • Ahn, Joong-Hoon (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University) ;
  • Lim, Yoong-Ho (Division of Bioscience and Biotechnology, BMIC, RCD, Konkuk University)
  • Received : 2010.05.10
  • Accepted : 2010.06.01
  • Published : 2010.09.28

Abstract

A search of the Streptomyces avermitilis genome reveals that its closest homologs are several O-methyltransferases. Among them, one gene (viz., saomt5) was cloned into the pET-15b expression vector by polymerase chain reaction using sequence-specific oligonucleotide primers. Biochemical characterization with the recombinant protein showed that SaOMT5 was S-adenosyl-L-methionine-dependent Omethyltransferase. Several compounds were tested as substrates of SaOMT5. As a result, SaOMT5 catalyzed O-methylation of flavonoids such as 6,7-dihydroxyflavone, 2',3'-dihydroxyflavone, 3',4'-dihydroxyflavone, quercetin, and 7,8-dihydroxyflavone, and phenolic compounds such as caffeic acid and caffeoyl Co-A. These reaction products were analyzed by TLC, HPLC, LC/MS, and NMR spectroscopy. In addition, SaOMT5 could convert phenolic compounds containing ortho-dihydroxy groups into O-methylated compounds, and 6,7-dihydroxyflavone was known to be the best substrate. SaOMT5 converted 6,7-dihydroxyflavone into 6-hydroxy-7-methoxyflavone and 7-hydroxy-6-methoxyflavone, and caffeic acid into ferulic acid and isoferulic acid, respectively. Moreover, SaOMT5 turned out to be a $Mg^{2+}$-dependent OMT, and the effect of $Mg^{2+}$ ion on its activity was five times greater than those of $Ca^{2+}$, $Fe^{2+}$, and $Cu^{2+}$ ions, EDTA, and metal-free medium.

Keywords

References

  1. Bentley, S. D., K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolorA3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  2. Dhar, K. and J. Rosazza. 2000. Purification and characterization of Streptomyces griseus catechol O-methyltransferase. Appl. Environ. Microbiol. 66: 4877-4882. https://doi.org/10.1128/AEM.66.11.4877-4882.2000
  3. Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411: 843-847. https://doi.org/10.1038/35081178
  4. Dixon, R. A. and M. J. Harrison. 1999. Activation structure and organization of genes involved in microbial defense in plants. Adv. Genet. 28: 165-234.
  5. Ferrer, J. L., C. Zubieta, R. A. Dixon, and J. P. Noel. 2005. Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol. 137: 1009-1017. https://doi.org/10.1104/pp.104.048751
  6. Hoffmann, L., S. Maury, M. Bergdoll, L. Thion, M. Erard, and M. Legrand. 2001. Indentification of the enzymatic active site of tobacco caffeoyl coenzyme A O-methyltransferase by site-directed mutagenesis. J. Biol. Chem. 276: 36831-36838. https://doi.org/10.1074/jbc.M104977200
  7. Ibdah, M., X. H. Zhang, J. Schmidt, and T. Vogt. 2003. A novel $Mg^{2+}$-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 278: 43961-43972. https://doi.org/10.1074/jbc.M304932200
  8. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol. 21: 526-531. https://doi.org/10.1038/nbt820
  9. Jacobs, M. and P. H. Rubery. 1988. Naturally occurring auxin transport regulators. Science 241: 246-249.
  10. Kim, H. J., B. H. Moon, J. H. Ahn, and Y. H. Lim. 2006. Complete NMR signal assignments of flavonol derivatives. Magn. Reson. Chem. 44: 188-190 https://doi.org/10.1002/mrc.1733
  11. Lee, E. J., D. H. Kim, Y. K. Woo, H. G. Hur, and Y. H. Lim. 2008. Solution structure of peptide AG4 used to form silver nanoparticles. Biochem. Biophys. Res. Commun. 376: 595-599. https://doi.org/10.1016/j.bbrc.2008.09.042
  12. Lee, Y. J., B. G. Kim, and J. H. Ahn. 2006. Molecular cloning and characterization of Bacillus cereus O-methyltransferase. J. Microbiol. Biotechnol. 16: 619-622.
  13. Lee, Y. J., B. G. Kim, Y. H. Park, Y. H. Lim, H. G. Hur, and J. H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096.
  14. Lee, Y. J., Y. M Jeon, J. S. Lee, B. G. Kim, C. H. Lee, and J. H. Ahn. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: Coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366. https://doi.org/10.5012/bkcs.2007.28.3.365
  15. Li, J., T.-M. Ou-Lee, R. Raba, R. G. Amundson, and R. L. Last. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179. https://doi.org/10.1105/tpc.5.2.171
  16. Marchler-Bauer, A., J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer, S. He, et al. 2003. CDD: A curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31: 383-387. https://doi.org/10.1093/nar/gkg087
  17. Martz, F., S. Maury, G. Pincon, and M. Legrand. 1998. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl co-A 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol. Biol. 36: 427-437. https://doi.org/10.1023/A:1005969825070
  18. Mol, J., E. Grotewold, and R. Koes. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3: 212-217. https://doi.org/10.1016/S1360-1385(98)01242-4
  19. Ramagopal, U. A., Y. V. Patskovsky, and S. C. Almo. 2006. Crystal structure of putative O-methyltransferase from Bacillus halodurans. Protein Data Bank Accession ID 2GPY.pdb.
  20. Schapira, A. H. and C. W. Olanow. 2008. Drug selection and timing of initiation of treatment in early Parkinson's disease. Ann. Neurol. 64: S47-S55.
  21. Schubert, H. L., R. M. Blumenthal, and X. Cheng. 2003. Many paths to methyltransfer: A chronicle of convergence. Trends Biochem. Sci. 28: 329-335. https://doi.org/10.1016/S0968-0004(03)00090-2
  22. Vidgren, J., L. S. Svensson, and A. Liljas. 1994. Crystal structure of catechol O-methyltransferase. Nature 368: 354-358. https://doi.org/10.1038/368354a0
  23. Ye, Z. H. and J. E. Varner. 1995. Differential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans. Plant Physiol. 108: 459-467. https://doi.org/10.1104/pp.108.2.459
  24. Yoon, Y. D., Y. S. Yi, Y. S. Lee, S. H. Kim, B. G. Kim, J. H. Ahn, and Y. H. Lim. 2005. Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biochim. Biophys. Acta 1730: 85-95. https://doi.org/10.1016/j.bbaexp.2005.06.005

Cited by

  1. 1H and 13C NMR spectral assignments of 2′‐hydroxychalcones vol.51, pp.6, 2010, https://doi.org/10.1002/mrc.3949
  2. 1H and 13C NMR spectral assignments of chalcones bearing pyrazoline–carbothioamide groups vol.51, pp.8, 2010, https://doi.org/10.1002/mrc.3971
  3. Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides vol.184, pp.4, 2010, https://doi.org/10.1007/s12010-017-2603-4
  4. Enhancement of S-Adenosylmethionine-Dependent Methylation by Integrating Methanol Metabolism with 5-Methyl-Tetrahydrofolate Formation in Escherichia coli vol.10, pp.9, 2020, https://doi.org/10.3390/catal10091001
  5. Rapid in vitro prototyping of O-methyltransferases for pathway applications in Escherichia coli vol.28, pp.6, 2010, https://doi.org/10.1016/j.chembiol.2021.04.010
  6. Roles of metal ions in regulating the formation of a drinking water odorant (2,3,6-trichloroanisole) by Sphingomonas ursincola in drinking water vol.776, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146054