References
- Canovas, M., T. Torroglosa, and J. L. Iborra. 2005. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme Microb. Technol. 25: 300-308.
- Chang, D., J. Zhang, B. Witholt, and Z. Li. 2004. Chemical and enzymatic synthetic methods for asymmetric oxidation of the C-C double bond. Biocatal. Biotransform. 22: 113-131. https://doi.org/10.1080/10242420410001710065
- Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
- Denyer, S. P. and J.-Y. Maillard. 2002. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol. Symp. Suppl. 92: 35S-45S. https://doi.org/10.1046/j.1365-2672.92.5s1.19.x
- De Smet, M. J., J. Kingma, and B. Witholt. 1978. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim. Biophys. Acta 506: 64-80. https://doi.org/10.1016/0005-2736(78)90435-2
- Ema, T., H. Yagasaki, N. Okita, M. Takeda, and T. Sakai. 2006. Asymmetic reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron 62: 6143-6149. https://doi.org/10.1016/j.tet.2006.04.061
- Eckstein, M., M. V. Filho, A. Liese, and U. Kragl. 2004. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem. Commun. 2004: 1084-1085.
- Goldberg, K., K. Schroer, S. Lutz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-348. https://doi.org/10.1007/s00253-007-1002-0
- Groeger, H., C. Rollmann, F. Chamouleau, I. Sebastien, O. May, W. Wienand, and K. Drauz. 2007. Enantioselective reduction of 4-fluoroacetophenone at high substrate concentration using a tailor-made recombinant whole cell catalyst. Adv. Synth. Catal. 349: 709-712. https://doi.org/10.1002/adsc.200600606
- Groeger, H., W. Hummel, C. Rollmann, F. Chamouleau, H. Husken, H. Werner, et al. 2004. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron 60: 633-640. https://doi.org/10.1016/j.tet.2003.11.066
- Hummel, W., K. Abokitse, K. Drauz, C. Rollmann, and H. Groeger. 2003. Towards a large-scale asymmetric reduction process with isolated enzymes: Expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv. Synth. Catal. 345: 153-159. https://doi.org/10.1002/adsc.200390001
- Johannes, T. W., R. D. Woodyer, and H. Zhao. 2007. Efficient regeneration of NADPH using an engineered phosphate dehydrogenase. Biotechnol. Bioeng. 96: 18-26. https://doi.org/10.1002/bit.21168
- Kaluzna, I. A., T. Matsuda, A. K. Sewell, and J. D. Stewart. 2004. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J. Am. Chem. Soc. 126: 12827-12832. https://doi.org/10.1021/ja0469479
- Kataoka, M., K. Yamamoto, H. Kawabata, M. Wada, K. Kita, H. Yanase, and S. Shimizu. 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490. https://doi.org/10.1007/s002530051421
- Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445. https://doi.org/10.1007/s00253-003-1347-y
- Kizaki, N., Y. Yasohara, J. Hasegawa, M. Wada, M. Kataoka, and S. Shimizu. 2001. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 55: 590-595. https://doi.org/10.1007/s002530100599
- Ni, Y. and R. R. Chen. 2004. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol. Bioeng. 87: 804-811. https://doi.org/10.1002/bit.20202
- Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444. https://doi.org/10.1016/j.jbiotec.2007.08.003
- Shorrock, V. J., M. Chartrain, and J. M. Woodley. 2004. An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction. Tetrahedron 60: 781-788. https://doi.org/10.1016/j.tet.2003.11.060
- Stampfer, W., K. Edegger, B. Kosjek, K. Faber, and W. Kroutil. 2004. Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv. Synth. Catal. 346: 57-62. https://doi.org/10.1002/adsc.200303210
- Wong, C. H., D. G. Drueckhammer, and H. M. Sweers. 1985. Enzymatic vs. fermentative synthesis: Thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J. Am. Chem. Soc. 107: 4028-4031. https://doi.org/10.1021/ja00299a044
- Wong, C. H. and G. M. Whitesides. 1981. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890-4899. https://doi.org/10.1021/ja00406a037
- Zhang, W., K. O'Conner, D. I. C. Wang, and Z. Li. 2009. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl. Environ. Microbiol. 75: 687-694. https://doi.org/10.1128/AEM.01506-08
Cited by
- Enzyme-mediated oxidations for the chemist vol.13, pp.2, 2010, https://doi.org/10.1039/c0gc00595a
- Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system vol.70, pp.3, 2010, https://doi.org/10.1016/j.molcatb.2011.02.013
- Enzymatic reductions for the chemist vol.13, pp.9, 2010, https://doi.org/10.1039/c1gc15424a
- Efficient Enantioselective Synthesis of (R)-[3,5-Bis(trifluoromethyl)phenyl] Ethanol by Leifsonia xyli CCTCC M 2010241 Using Isopropanol as Co- Substrate vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1203.03047
- Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System vol.23, pp.2, 2010, https://doi.org/10.4014/jmb.1209.09059
- Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis vol.23, pp.10, 2010, https://doi.org/10.4014/jmb.1305.05030
- More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’ vol.15, pp.2, 2013, https://doi.org/10.1039/c2gc36797a
- Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation vol.97, pp.7, 2010, https://doi.org/10.1007/s00253-013-4750-z
- Characterization of the Kluyveromyces marxianus strain DMB1 YGL157w gene product as a broad specificity NADPH-dependent aldehyde reductase vol.5, pp.None, 2015, https://doi.org/10.1186/s13568-015-0104-9
- NADPH-generating systems in bacteria and archaea vol.6, pp.None, 2010, https://doi.org/10.3389/fmicb.2015.00742
- Designer Microorganisms for Optimized Redox Cascade Reactions – Challenges and Future Perspectives vol.357, pp.8, 2010, https://doi.org/10.1002/adsc.201500202
- Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling vol.13, pp.4, 2018, https://doi.org/10.1371/journal.pone.0196182
- Engineering an Alcohol Dehydrogenase for Balancing Kinetics in NADPH Regeneration with 1,4-Butanediol as a Cosubstrate vol.7, pp.18, 2010, https://doi.org/10.1021/acssuschemeng.9b03879