DOI QR코드

DOI QR Code

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A. (Institute of Soil and Environmental Sciences, University of Agriculture) ;
  • Shah, M. Kashif (Institute of Soil and Environmental Sciences, University of Agriculture) ;
  • Naveed, M. (Institute of Soil and Environmental Sciences, University of Agriculture) ;
  • Akhter, M. Javed (Institute of Soil and Environmental Sciences, University of Agriculture)
  • 투고 : 2010.02.07
  • 심사 : 2010.04.13
  • 발행 : 2010.09.28

초록

Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.

키워드

참고문헌

  1. Arshad, M. and W. T. Frankenberger Jr. 1990. Response of Zea mays L. and Lycopersicon esculentum to the ethylene precursor, L-methionine and L-ethionine applied to soil. Plant Soil 122: 219-227. https://doi.org/10.1007/BF02851979
  2. Arshad, M. and W. T. Frankenberger Jr. 1991. Microbial production of plant hormones. Plant Soil 133: 1-8. https://doi.org/10.1007/BF00011893
  3. Ashraf, M. and P. J. C. Harris. 2005. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Haworth Press, New York.
  4. Azooz, M. M., M. A. Shaddad, and A. A. Abdel-Latef. 2004. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J. Plant Physiol. 9: 1-8.
  5. Bala, N., P. K. Sharma, and K. Lakshminarayana. 1990. Nodulation and nitrogen fixation by salinity-tolerant rhizobia in symbiosis with tree legumes. Agric. Ecosyst. Environ. 33: 33-46. https://doi.org/10.1016/0167-8809(90)90142-Z
  6. Bianco, C., E. Imperlini, R. Calogero, B. Senatore, A. Amoresano, A. Carpentieri, P. Pucci, and R. Defez. 2006. Indole-3-acetic acid improves Escherichia coli's defenses to stress. Arch. Microbiol. 185: 373-382. https://doi.org/10.1007/s00203-006-0103-y
  7. Bhattacharyya, R. N. and P. S. Basu. 1997. Bioproduction of indole acetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum. Acta Microbiol. Immunol. Hung. 44: 109-118.
  8. Datta, C. and P. S. Basu. 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155: 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6
  9. Datta, K. S., S. K. Varma, R. Angrish, B. Kumar, and P. Kumari. 1997. Alleviation of salt stress by plant growth regulators in Triticum aestivum. Biol. Planta 40: 269-275. https://doi.org/10.1023/A:1001076805595
  10. Ferreras, A. D., R. P. Arnedo, A. Becker, J. Olivares, M. J. Soto, and J. Sanjuan. 2006. Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J. Bacteriol. 188: 7617-7621. https://doi.org/10.1128/JB.00719-06
  11. Ghosh, S. and P. S. Basu. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol. Res. 161: 362-366. https://doi.org/10.1016/j.micres.2006.01.001
  12. Hafeez, F. Y., Z. Aslam, and K. A. Malik. 1987. Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata. Plant Soil 106: 233-236.
  13. Hussain, A., M. Khalid, A. Latif, and K. Hussain. 1989. Effect of L-TRP on growth, nodulation and N-content of Albizia lebbeck. Nitrogen Fixing Tree Res. Report 7: 69-72.
  14. Hussain, I., M. Arshad, Z. A. Zahir, M. Javed, and A. Hussain. 1995. Substrate dependent microbial production of auxins and their influence on the growth and nodulation of lentil. Pakistan J. Agric. Sci. 32: 149-152.
  15. Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewin, I. Bonilla, and R. Rivilla. 1995. Ionic stress and osmotic pressure induce different alternations in Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3705.
  16. Malhotra, M. and S. Srivastava. 2006. Targeted engineering of Azospirillum brasiliense with indole acetamide pathway for indoleacetic acid over-expression. Can. J. Microbiol. 52: 1078-1084. https://doi.org/10.1139/w06-071
  17. Manchanda, G. and G. Neera. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Planta 30: 595-618. https://doi.org/10.1007/s11738-008-0173-3
  18. Mensah, J. K., P. A. Akomeah, and C. Diejemaoh. 2004. The influnce of salinity and pH on the germination and seedling establishment of Leucana leucocephala. Indian J. Agric. Res. 38: 94-100.
  19. Mirza, B. S., M. S. Mirza, A. Bano, and K. A. Malik. 2007. Coinoculatoin of chickpea with Rhizobium isolates from roots and nodules and phytohormones-producing Enterobacter strains. Aust. J. Exp. Agric. 47: 1008-1015. https://doi.org/10.1071/EA06151
  20. Nickel, L. G. 1982. Plant Growth Regulators: Agriculture Uses. Springer-Verlag, New York.
  21. Parida, A. K. and A. B. DAS. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Safety 60: 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  22. Raghavan, C., E. K. Ong, M. J. Dalling, and T. V. Stevenson. 2006. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Func. Integ. Genomics 6: 60-70. https://doi.org/10.1007/s10142-005-0012-1
  23. Rao, D. L. N. and P. C. Sharma. 1995. Alleviation of salinity stress in chickpea by Rhizobium inoculation or nitrate supply. Biol. Planta 37: 405-410. https://doi.org/10.1007/BF02913989
  24. Russell, A. D., W. B. Hugo, and G. A. J. Ayliffo. 1982. Principles and Practices of Disinfection, Preservation and Sterilization. Black Wall Scientific, London.
  25. Ryan, J., G. Estefan, and A. Rashid. 2001. Soil and Plant Analysis: Laboratory Manual. p. 172. International Centre for Agricultural Research in Dry Areas (ICARDA), Aleppo, Syria.
  26. Sarwar, M., M. Arshad, D. A. Martens, and W. T. Frankenberger Jr. 1992. Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 147: 207-215. https://doi.org/10.1007/BF00029072
  27. Singh, G. and S. Jain. 1982. Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity. Indian J. Plant Physiol. 25: 167-179.
  28. Steel, R. G. D., J. H. Torrie, and D. A. Dicky. 1997. Principles and Procedures of Statistics - A Biometrical Approach, pp 204-227. 3rd Ed. McGraw Hill Book International Co., Singapore.
  29. Vincent, J. M. 1970. Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No. 15. Blackwell Scientific Publications, Oxford.
  30. Vinocur, B. and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress; achievement and limitations. Curr. Opin. Biotechnol. 16: 123-132. https://doi.org/10.1016/j.copbio.2005.02.001
  31. Zahir, Z. A., S. A. Abbas, M. Khalid, and M. Arshad. 2000. Substrate dependent microbially derived plant hormones for improving growth of maize seedlings. Pak. J. Biol. Sci. 3: 289-291. https://doi.org/10.3923/pjbs.2000.289.291
  32. Zahran, H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968-989.
  33. Zhu, Y., G. Shearer, and D. Kohl. 1992. Proline fed to intact soybean plants influences acetylene reduction activity and content and metabolism of porline in bacteroids. Plant Physiol. 98: 1020-1028. https://doi.org/10.1104/pp.98.3.1020

피인용 문헌

  1. The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses During Development and Water Stress vol.20, pp.5, 2010, https://doi.org/10.1093/dnares/dst027
  2. Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants vol.37, pp.2, 2014, https://doi.org/10.1590/s1415-47572014000300012
  3. L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN vol.65, pp.3, 2010, https://doi.org/10.1007/s13213-014-0976-y
  4. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress vol.6, pp.None, 2010, https://doi.org/10.3389/fpls.2015.00742
  5. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN , ZmPILS , ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize ( Zea mays L.) under Various Abiotic Stresses vol.10, pp.3, 2010, https://doi.org/10.1371/journal.pone.0118751
  6. Plant growth promoting rhizobia: challenges and opportunities vol.5, pp.4, 2010, https://doi.org/10.1007/s13205-014-0241-x
  7. Expression of Brassica napus TTG2 , a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes vol.66, pp.19, 2010, https://doi.org/10.1093/jxb/erv287
  8. Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection vol.56, pp.10, 2010, https://doi.org/10.1093/pcp/pcv113
  9. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters vol.23, pp.10, 2010, https://doi.org/10.1007/s11356-016-6223-2
  10. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation vol.43, pp.7, 2016, https://doi.org/10.1071/fp15265
  11. Salinity and High Temperature Tolerance in Mungbean [ Vigna radiata (L.) Wilczek] from a Physiological Perspective vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.00957
  12. Biofertilizers: a potential approach for sustainable agriculture development vol.24, pp.4, 2010, https://doi.org/10.1007/s11356-016-8104-0
  13. High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis vol.18, pp.8, 2010, https://doi.org/10.3390/ijms18081625
  14. Genome-wide identification and expression analysis of ClLAX , ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting vol.18, pp.None, 2010, https://doi.org/10.1186/s12863-017-0500-z
  15. Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments vol.18, pp.12, 2010, https://doi.org/10.3390/ijms18122719
  16. Impact of Plant Growth-Promoting Rhizobacteria on Vegetable Crop Production vol.24, pp.3, 2010, https://doi.org/10.1080/19315260.2017.1407984
  17. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.00148
  18. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02992
  19. Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5122
  20. Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper (Capsicum annuum L.) under various abiotic stresses and hormone treatments vol.61, pp.2, 2010, https://doi.org/10.1139/gen-2017-0163
  21. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.02791
  22. A tetraspanin gene regulating auxin response and affecting orchid perianth size and various plant developmental processes vol.3, pp.8, 2019, https://doi.org/10.1002/pld3.157
  23. Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinumL.) enhance byRhizobiumandAzotobacterinoculations in saline soil vol.42, pp.20, 2010, https://doi.org/10.1080/01904167.2019.1655038
  24. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops vol.10, pp.1, 2010, https://doi.org/10.1007/s13205-019-1994-z
  25. Expression Profile of PIN -Formed Auxin Efflux Carrier Genes during IBA-Induced In Vitro Adventitious Rooting in Olea europaea L. vol.9, pp.2, 2010, https://doi.org/10.3390/plants9020185
  26. The Combined Effects of Gibberellic Acid and Rhizobium on Growth, Yield and Nutritional Status in Chickpea (Cicer arietinum L.) vol.11, pp.1, 2010, https://doi.org/10.3390/agronomy11010105
  27. Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota vol.12, pp.None, 2010, https://doi.org/10.3389/fpls.2021.752653
  28. The response of soybean plants due to inoculation of rhizobium bacteria and different fertilizer application vol.803, pp.1, 2010, https://doi.org/10.1088/1755-1315/803/1/012018
  29. Application of organic amendments and PGPR on Salibu Rice yield for drought adaptation vol.824, pp.1, 2010, https://doi.org/10.1088/1755-1315/824/1/012079
  30. Bacillus subtilis Y16 and biogas slurry enhanced potassium to sodium ratio and physiology of sunflower (Helianthus annuus L.) to mitigate salt stress vol.28, pp.29, 2010, https://doi.org/10.1007/s11356-021-13419-2
  31. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review vol.32, pp.2, 2010, https://doi.org/10.1016/s1002-0160(21)60070-x