참고문헌
- Arshad, M. and W. T. Frankenberger Jr. 1990. Response of Zea mays L. and Lycopersicon esculentum to the ethylene precursor, L-methionine and L-ethionine applied to soil. Plant Soil 122: 219-227. https://doi.org/10.1007/BF02851979
- Arshad, M. and W. T. Frankenberger Jr. 1991. Microbial production of plant hormones. Plant Soil 133: 1-8. https://doi.org/10.1007/BF00011893
- Ashraf, M. and P. J. C. Harris. 2005. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Haworth Press, New York.
- Azooz, M. M., M. A. Shaddad, and A. A. Abdel-Latef. 2004. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J. Plant Physiol. 9: 1-8.
- Bala, N., P. K. Sharma, and K. Lakshminarayana. 1990. Nodulation and nitrogen fixation by salinity-tolerant rhizobia in symbiosis with tree legumes. Agric. Ecosyst. Environ. 33: 33-46. https://doi.org/10.1016/0167-8809(90)90142-Z
- Bianco, C., E. Imperlini, R. Calogero, B. Senatore, A. Amoresano, A. Carpentieri, P. Pucci, and R. Defez. 2006. Indole-3-acetic acid improves Escherichia coli's defenses to stress. Arch. Microbiol. 185: 373-382. https://doi.org/10.1007/s00203-006-0103-y
- Bhattacharyya, R. N. and P. S. Basu. 1997. Bioproduction of indole acetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum. Acta Microbiol. Immunol. Hung. 44: 109-118.
- Datta, C. and P. S. Basu. 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155: 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6
- Datta, K. S., S. K. Varma, R. Angrish, B. Kumar, and P. Kumari. 1997. Alleviation of salt stress by plant growth regulators in Triticum aestivum. Biol. Planta 40: 269-275. https://doi.org/10.1023/A:1001076805595
- Ferreras, A. D., R. P. Arnedo, A. Becker, J. Olivares, M. J. Soto, and J. Sanjuan. 2006. Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J. Bacteriol. 188: 7617-7621. https://doi.org/10.1128/JB.00719-06
- Ghosh, S. and P. S. Basu. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol. Res. 161: 362-366. https://doi.org/10.1016/j.micres.2006.01.001
- Hafeez, F. Y., Z. Aslam, and K. A. Malik. 1987. Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata. Plant Soil 106: 233-236.
- Hussain, A., M. Khalid, A. Latif, and K. Hussain. 1989. Effect of L-TRP on growth, nodulation and N-content of Albizia lebbeck. Nitrogen Fixing Tree Res. Report 7: 69-72.
- Hussain, I., M. Arshad, Z. A. Zahir, M. Javed, and A. Hussain. 1995. Substrate dependent microbial production of auxins and their influence on the growth and nodulation of lentil. Pakistan J. Agric. Sci. 32: 149-152.
- Lloret, J., L. Bolanos, M. M. Lucas, J. M. Peart, N. J. Brewin, I. Bonilla, and R. Rivilla. 1995. Ionic stress and osmotic pressure induce different alternations in Rhizobium meliloti strain. Appl. Environ. Microbiol. 61: 3701-3705.
- Malhotra, M. and S. Srivastava. 2006. Targeted engineering of Azospirillum brasiliense with indole acetamide pathway for indoleacetic acid over-expression. Can. J. Microbiol. 52: 1078-1084. https://doi.org/10.1139/w06-071
- Manchanda, G. and G. Neera. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Planta 30: 595-618. https://doi.org/10.1007/s11738-008-0173-3
- Mensah, J. K., P. A. Akomeah, and C. Diejemaoh. 2004. The influnce of salinity and pH on the germination and seedling establishment of Leucana leucocephala. Indian J. Agric. Res. 38: 94-100.
- Mirza, B. S., M. S. Mirza, A. Bano, and K. A. Malik. 2007. Coinoculatoin of chickpea with Rhizobium isolates from roots and nodules and phytohormones-producing Enterobacter strains. Aust. J. Exp. Agric. 47: 1008-1015. https://doi.org/10.1071/EA06151
- Nickel, L. G. 1982. Plant Growth Regulators: Agriculture Uses. Springer-Verlag, New York.
- Parida, A. K. and A. B. DAS. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Safety 60: 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Raghavan, C., E. K. Ong, M. J. Dalling, and T. V. Stevenson. 2006. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Func. Integ. Genomics 6: 60-70. https://doi.org/10.1007/s10142-005-0012-1
- Rao, D. L. N. and P. C. Sharma. 1995. Alleviation of salinity stress in chickpea by Rhizobium inoculation or nitrate supply. Biol. Planta 37: 405-410. https://doi.org/10.1007/BF02913989
- Russell, A. D., W. B. Hugo, and G. A. J. Ayliffo. 1982. Principles and Practices of Disinfection, Preservation and Sterilization. Black Wall Scientific, London.
- Ryan, J., G. Estefan, and A. Rashid. 2001. Soil and Plant Analysis: Laboratory Manual. p. 172. International Centre for Agricultural Research in Dry Areas (ICARDA), Aleppo, Syria.
- Sarwar, M., M. Arshad, D. A. Martens, and W. T. Frankenberger Jr. 1992. Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 147: 207-215. https://doi.org/10.1007/BF00029072
- Singh, G. and S. Jain. 1982. Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity. Indian J. Plant Physiol. 25: 167-179.
- Steel, R. G. D., J. H. Torrie, and D. A. Dicky. 1997. Principles and Procedures of Statistics - A Biometrical Approach, pp 204-227. 3rd Ed. McGraw Hill Book International Co., Singapore.
- Vincent, J. M. 1970. Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No. 15. Blackwell Scientific Publications, Oxford.
- Vinocur, B. and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress; achievement and limitations. Curr. Opin. Biotechnol. 16: 123-132. https://doi.org/10.1016/j.copbio.2005.02.001
- Zahir, Z. A., S. A. Abbas, M. Khalid, and M. Arshad. 2000. Substrate dependent microbially derived plant hormones for improving growth of maize seedlings. Pak. J. Biol. Sci. 3: 289-291. https://doi.org/10.3923/pjbs.2000.289.291
- Zahran, H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968-989.
- Zhu, Y., G. Shearer, and D. Kohl. 1992. Proline fed to intact soybean plants influences acetylene reduction activity and content and metabolism of porline in bacteroids. Plant Physiol. 98: 1020-1028. https://doi.org/10.1104/pp.98.3.1020
피인용 문헌
- The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses During Development and Water Stress vol.20, pp.5, 2010, https://doi.org/10.1093/dnares/dst027
- Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants vol.37, pp.2, 2014, https://doi.org/10.1590/s1415-47572014000300012
- L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN vol.65, pp.3, 2010, https://doi.org/10.1007/s13213-014-0976-y
- The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress vol.6, pp.None, 2010, https://doi.org/10.3389/fpls.2015.00742
- Genome-Wide Identification and Expression Profiling Analysis of ZmPIN , ZmPILS , ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize ( Zea mays L.) under Various Abiotic Stresses vol.10, pp.3, 2010, https://doi.org/10.1371/journal.pone.0118751
- Plant growth promoting rhizobia: challenges and opportunities vol.5, pp.4, 2010, https://doi.org/10.1007/s13205-014-0241-x
- Expression of Brassica napus TTG2 , a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes vol.66, pp.19, 2010, https://doi.org/10.1093/jxb/erv287
- Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection vol.56, pp.10, 2010, https://doi.org/10.1093/pcp/pcv113
- Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters vol.23, pp.10, 2010, https://doi.org/10.1007/s11356-016-6223-2
- Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation vol.43, pp.7, 2016, https://doi.org/10.1071/fp15265
- Salinity and High Temperature Tolerance in Mungbean [ Vigna radiata (L.) Wilczek] from a Physiological Perspective vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.00957
- Biofertilizers: a potential approach for sustainable agriculture development vol.24, pp.4, 2010, https://doi.org/10.1007/s11356-016-8104-0
- High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis vol.18, pp.8, 2010, https://doi.org/10.3390/ijms18081625
- Genome-wide identification and expression analysis of ClLAX , ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting vol.18, pp.None, 2010, https://doi.org/10.1186/s12863-017-0500-z
- Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments vol.18, pp.12, 2010, https://doi.org/10.3390/ijms18122719
- Impact of Plant Growth-Promoting Rhizobacteria on Vegetable Crop Production vol.24, pp.3, 2010, https://doi.org/10.1080/19315260.2017.1407984
- Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.00148
- Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management vol.9, pp.None, 2010, https://doi.org/10.3389/fmicb.2018.02992
- Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5122
- Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper (Capsicum annuum L.) under various abiotic stresses and hormone treatments vol.61, pp.2, 2010, https://doi.org/10.1139/gen-2017-0163
- Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.02791
- A tetraspanin gene regulating auxin response and affecting orchid perianth size and various plant developmental processes vol.3, pp.8, 2019, https://doi.org/10.1002/pld3.157
- Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinumL.) enhance byRhizobiumandAzotobacterinoculations in saline soil vol.42, pp.20, 2010, https://doi.org/10.1080/01904167.2019.1655038
- Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops vol.10, pp.1, 2010, https://doi.org/10.1007/s13205-019-1994-z
- Expression Profile of PIN -Formed Auxin Efflux Carrier Genes during IBA-Induced In Vitro Adventitious Rooting in Olea europaea L. vol.9, pp.2, 2010, https://doi.org/10.3390/plants9020185
- The Combined Effects of Gibberellic Acid and Rhizobium on Growth, Yield and Nutritional Status in Chickpea (Cicer arietinum L.) vol.11, pp.1, 2010, https://doi.org/10.3390/agronomy11010105
- Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota vol.12, pp.None, 2010, https://doi.org/10.3389/fpls.2021.752653
- The response of soybean plants due to inoculation of rhizobium bacteria and different fertilizer application vol.803, pp.1, 2010, https://doi.org/10.1088/1755-1315/803/1/012018
- Application of organic amendments and PGPR on Salibu Rice yield for drought adaptation vol.824, pp.1, 2010, https://doi.org/10.1088/1755-1315/824/1/012079
- Bacillus subtilis Y16 and biogas slurry enhanced potassium to sodium ratio and physiology of sunflower (Helianthus annuus L.) to mitigate salt stress vol.28, pp.29, 2010, https://doi.org/10.1007/s11356-021-13419-2
- Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review vol.32, pp.2, 2010, https://doi.org/10.1016/s1002-0160(21)60070-x