DOI QR코드

DOI QR Code

An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae)

  • Goksan, Tolga (Department of Aquaculture, Faculty of Fisheries, Canakkale Onsekiz Mart University) ;
  • Ak, lknur (Department of Aquaculture, Faculty of Fisheries, Canakkale Onsekiz Mart University) ;
  • Gokpinar, Sevket (Department of Aquaculture, Faculty of Fisheries, Ege University)
  • Received : 2009.09.04
  • Accepted : 2009.11.06
  • Published : 2010.09.28

Abstract

In traditional mixotrophic cultures of microalgae, all the inorganic nutrients and organic carbon sources are supplied in the medium before inoculation. In this study, however, an alternative approach was adopted in Haematococcus pluvialis Flotow, a microalga capable of growing mixotrophically on sodium acetate (Na-Ac). First, the cells were grown under 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ phototrophically without Na-Ac until the stationary phase and then exposed to five different light regimes by the addition of Na-Ac (e.g., dark, 20, 40, 75, and 150 ${\mu}Mol$ photons $m^{-2}s^{-1}$). Dry weight (DW), pigments, and especially cell number in alternative mixotrophy (AM) were higher than traditional mixotrophy (TM). Cell number in AM almost doubled up from 21.7 to $42.9{\times}10^4$ cells/ml during 5-day exposure to Na-Ac, whereas the increase was only 1.2-fold in TM. Maximum cell density was reached in 75 ${\mu}Mol$ photons $m^{-2}s^{-1}$ among the light intensities tested. We propose that Na-Ac in TM of H. pluvialis can not be utilized as efficiently as in AM. With this respect, AM has several advantages against TM such as a much higher cell density in a batch culture period and minimized risk of contamination owing to the shorter exposure of cells to organic carbon sources. In consequence, this method may be used for other strains of the species, and even for the other microalgal species able to grow mixotrophically.

Keywords

References

  1. Aflalo, C., Y. Meshulam, A. Zarka, and S. Boussiba. 2007. On the relative efficiency of two vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98: 300-305. https://doi.org/10.1002/bit.21391
  2. Boussiba, S. and A. Vonshak. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082. https://doi.org/10.1093/oxfordjournals.pcp.a078171
  3. Chen, F., H. Chen, and X. Gong. 1997. Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour. Technol. 62: 19-24. https://doi.org/10.1016/S0960-8524(97)00115-6
  4. Christiansen, R., O. Lie, and O. J. Torrissen. 1995. Growth and survival of Atlantic salmon, Salmo salar L., fed different dietary levels of astaxanthin. First-feeding fry. Aquac. Nutr. 1: 189-198. https://doi.org/10.1111/j.1365-2095.1995.tb00043.x
  5. Cifuentes, A. S., M. A. Gonzalez, S. Vargas, M. Hoeneisen, and N. Gonzalez. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, U.S.A.) under laboratory conditions. Biol. Res. 36: 343-357.
  6. Fabregas, J., A. Otero, A. Maseda, and A. Dominguez. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89: 65-71. https://doi.org/10.1016/S0168-1656(01)00289-9
  7. Fabregas, J., A. Dominguez, M. Regueiro, A. Maseda, and A. Otero. 2001. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530-535.
  8. Falkowski, P. G. 1980. Light-shade adaptation and vertical mixing of marine phytoplankton, pp. 99-117. In P. G. Falkowski (ed.). Primary Productivity in the Sea. Plenum, New York.
  9. Gong, X. and F. Chen. 1997. Optimization of culture medium for Haematococcus pluvialis. J. Appl. Phycol. 9: 437-444. https://doi.org/10.1023/A:1007944922264
  10. Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21: 210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
  11. Hagen, C., S. Siegmund, and W. Braune. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37: 217-226. https://doi.org/10.1017/S0967026202003669
  12. Hata, N., J. C. Ogbonna, Y. Hasegawa, H. Taroda, and H. Tanaka. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J. Appl. Phycol. 13: 395-402. https://doi.org/10.1023/A:1011921329568
  13. Inborr, J. 1998. Haematococcus, the poultry pigmentor. Feed Mix 6: 31-34.
  14. Jeon, Y.-C., C.-W. Cho, and Y.-S. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb. Tech. 39: 490-495. https://doi.org/10.1016/j.enzmictec.2005.12.021
  15. Jin, E., C.-G. Lee, and J. E. W. Polle. 2006. Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): Biosynthesis, regulation, and biotechnology. J. Microbiol. Biotechnol. 16: 821-831.
  16. Kaewpintong, K., A. Shotipruk, S. Powtongsook, and P. Pavasant. 2007. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour. Technol. 98: 288-295. https://doi.org/10.1016/j.biortech.2006.01.011
  17. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873.
  18. Lee, Y.-K. and C. W. Soh. 1991. Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 27: 575-577. https://doi.org/10.1111/j.0022-3646.1991.00575.x
  19. Lee, Y.-K. and D.-H. Zhang. 1999. Production of astaxanthin by Haematococcus, pp. 173-190. In Z. Cohen (ed.). Chemicals from Microalgae. Taylor and Francis, London.
  20. Lee, H.-S., Z.-H. Kim, S.-E. Jung, J.-D. Kim, and C.-G. Lee. 2006. Specific light uptake rate can be served as a scale-up parameter in photobioreactor operations. J. Microbiol. Biotechnol. 16: 1890-1896.
  21. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods Enzymol. 148: 349-382.
  22. Meireles, L. A., J. L. Azevedo, J. P. Cunha, and F. Xavier Malcata. 2002. On-line determination of biomass in a microalgal bioreactor using a novel computerized flow injection analysis system. Biotechnol. Prog. 18: 1387-1391. https://doi.org/10.1021/bp020283u
  23. Orosa, M., D. Franqueira, A. Cid, and J. Abalde. 2005. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour. Technol. 96: 373-378. https://doi.org/10.1016/j.biortech.2004.04.006
  24. Prezelin, B. B. and H. A. Matlick. 1980. Time course of photoadaptation in the photosynthesis irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Mar. Biol. 58: 85-96. https://doi.org/10.1007/BF00396119
  25. Rippka, R., J. B. Deruelles, M. Herdman, B. Waterbury, and R. Y. Stanier. 1979. Generic assignments, strain history and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
  26. Rocha, J. M. S., J. E. C. Garcia, and M. H. F. Henriques. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 20: 237-242. https://doi.org/10.1016/S1389-0344(03)00061-3
  27. Sandnes, J. M., T. Ringstad, D. Wenner, P. H. Heyerdahl, T. Kallqvist, and H. R. Gislerod. 2006. Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J. Biotechnol. 122: 209-215. https://doi.org/10.1016/j.jbiotec.2005.08.034
  28. Torzillo, G., T. Goksan, C. Faraloni, J. Kopecky, and J. Masojidek. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15: 127-136. https://doi.org/10.1023/A:1023854904163
  29. Torzillo, G., T. Goksan, O. Isik, and S. Gokpinar. 2005. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol. 40: 233-240. https://doi.org/10.1080/09670260500123609
  30. Wang, S. B., F. Chen, M. Sommerfeld, and Q. Hu. 2005. Isolation and proteomic analysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5: 4839-4851. https://doi.org/10.1002/pmic.200400092
  31. Yamada, S., Y. Tanaka, M. Sameshima, and Y. Ito. 1990. Pigmentation of prawn (Penaeus japonicus) with carotenoids. I. Effect of dietary astaxanthin, beta-carotene and canthaxanthin on pigmentation. Aquaculture 87: 323-330. https://doi.org/10.1016/0044-8486(90)90069-Y

Cited by

  1. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina vol.104, pp.None, 2010, https://doi.org/10.1016/j.biortech.2011.10.025
  2. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply vol.34, pp.13, 2010, https://doi.org/10.1080/09593330.2013.827748
  3. Carotenogênese em células de Haematococcus pluvialis induzidas pelos estresses luminoso e nutricional vol.48, pp.8, 2010, https://doi.org/10.1590/s0100-204x2013000800003
  4. Effect of Carbon Sources and Fe3+ on the Growth and Lipid Accumulation of Monoraphidium sp. FXY-10 under Mixotrophic Culture Condition vol.1070, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/amr.1070-1072.157
  5. A novel alpine species of Haematococcus (Chlamydomonadales: Chlorophyta) from New Zealand vol.56, pp.2, 2010, https://doi.org/10.1080/0028825x.2018.1458737
  6. Effect of nutrients on the growth of a new alpine strain of Haematococcus (Chlorophyceae) from New Zealand vol.67, pp.1, 2010, https://doi.org/10.1111/pre.12344
  7. Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage vol.31, pp.2, 2010, https://doi.org/10.1007/s10811-018-1622-z
  8. Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress vol.29, pp.None, 2010, https://doi.org/10.3354/ab00733
  9. Initial study of polymer-based nanoparticles effect on carotenogenesis of Haematococcus lacustris vol.457, pp.None, 2010, https://doi.org/10.1088/1755-1315/457/1/012035
  10. Enhancing the production of astaxanthin by mixotrophic cultivation of Haematococcus pluvialis in open raceway ponds vol.28, pp.2, 2020, https://doi.org/10.1007/s10499-019-00483-2
  11. Sequential Continuous Mixotrophic and Phototrophic Cultivation Might Be a Cost-Effective Strategy for Astaxanthin Production From the Microalga Haematococcus lacustris vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.740533
  12. Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.763742
  13. Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.763742
  14. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin vol.11, pp.2, 2010, https://doi.org/10.3390/biom11020256
  15. Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency vol.345, pp.None, 2010, https://doi.org/10.1016/j.biortech.2021.126484
  16. Enhancement of Astaxanthin and Fatty Acid Production in Haematococcus pluvialis Using Strigolactone vol.12, pp.4, 2022, https://doi.org/10.3390/app12041791