References
- Ahmad, F., I. Ahmad, and M. S. Khan. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Barazani, O. and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25: 2397-2406. https://doi.org/10.1023/A:1020890311499
- Callis, J. 2005. Plant biology: Auxin action. Nature 435: 436-437.
- Christiansen-Weniger, C. 1998. Endophytic establishment of diazotrophic bacteria in auxin-induced tumors of cereal crops. Crit. Rev. Plant Sci. 17: 55-76. https://doi.org/10.1016/S0735-2689(98)00354-2
- Cohen, Z. 1997. The chemicals of Spirullina, pp. 175-204. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-Biology, and Biotechnology. CRC Press, London
- Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18. https://doi.org/10.3109/10408419509113531
- de-Bashan, L. E., H. Antoun, and Y. Bashan. 2008. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44: 938-947. https://doi.org/10.1111/j.1529-8817.2008.00533.x
- Dunlap, J. R. and K. M. Robacker. 1988. Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture media. Plant Physiol. 88: 379-382. https://doi.org/10.1104/pp.88.2.379
- Fierer, N. and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103: 626-631. https://doi.org/10.1073/pnas.0507535103
- George, E. A. 1976. Culture Centre of Algae and Protozoa. List of Strains 1976, 3rd Ed. Institute of Terrestrial Ecology, Natural Environmental Research Council, Cambridge.
- Glick, B. R., C. L. Patten, G. Holguim, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London; River Edge, NJ.
- Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
- Gravel, V., H. Antoun, and R. J. Tweddell. 2007. Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur. J. Plant Pathol. 119: 457-462. https://doi.org/10.1007/s10658-007-9170-4
- Kende, H. and J. Zeevaart. 1997. The five "classical" plant hormones. Plant Cell 9: 1197-1210. https://doi.org/10.1105/tpc.9.7.1197
- Martinez, V. M., J. Osuna, O. Paredes-Lopez, and F. Guevara. 1997. Production of indole-3-acetic acid by several wild-type strains of Ustilago maydis. World J. Microbiol. Biotechnol. 13: 295-298. https://doi.org/10.1023/A:1018583007513
- McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20. https://doi.org/10.1093/nar/gkh435
- Nissen, P. 1985. Dose responses of auxins. Physiol. Plant. 65: 357-374. https://doi.org/10.1111/j.1399-3054.1985.tb08659.x
- Prasanna, R., P. Jaiswal, S. Nayak, A. Sood, and B. D. Kaushik. 2009. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49: 89-97. https://doi.org/10.1007/s12088-009-0009-x
- Ribnicky, D. M., N. Ilic, J. D. Cohen, and T. J. Cooke. 1996. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism - The implications for carrot somatic embryogenesis. Plant Physiol. 112: 549-558. https://doi.org/10.1104/pp.112.2.549
- Rossi, N., I. Petit, P. Jaouen, P. Legentilhomme, and M. Derouiniot. 2005. Harvesting of cyanobacterium Arthrospira platensis using inorganic filtration membranes. Separ. Sci. Technol. 40: 3033-3050. https://doi.org/10.1080/01496390500385046
- Sergeeva, E., A. Liaimer, and B. Bergman. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238. https://doi.org/10.1007/s00425-002-0749-x
- Sridevi, M. and K. V. Mallaiah. 2007. Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr. J. Microbiol. Res. 1: 125-128.
- Tandeau de Marsac, N. and J. Houmard. 1988. Complementary chromatic adaptation: Physiological conditions and action spectra. Methods Enzymol. 167: 318-328. https://doi.org/10.1016/0076-6879(88)67037-6
- Trabelsi, L., N. M'sakni, H. Ouada, H. Bacha, and S. Roudesli. 2009. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioproc. Eng. 14: 27-31. https://doi.org/10.1007/s12257-008-0102-8
- Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126. https://doi.org/10.1134/S0003683806020013
- Vestergard, M., L. Bjornlund, F. Henry, and R. Ronn. 2007. Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295: 115-125. https://doi.org/10.1007/s11104-007-9267-8
- Waterbury, J. 2006. The cyanobacteria - isolation, purification and identification, pp. 1053-1073. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes. Springer, The Netherlands.
- Yuan, Z. C., P. Liu, P. Saenkham, K. Kerr, and E. W. Nester. 2008. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium - plant interactions. J. Bacteriol. 190: 494-507. https://doi.org/10.1128/JB.01387-07
Cited by
- Endogenous auxins in plant growth-promoting Cyanobacteria-Anabaena vaginicola and Nostoc calcicola vol.25, pp.2, 2010, https://doi.org/10.1007/s10811-012-9872-7
- Characterization of IAA Production by the Mangrove Cyanobacterium Phormidium sp. MI405019 and Its Influence on Tobacco Seed Germination and Organogenesis vol.32, pp.4, 2010, https://doi.org/10.1007/s00344-013-9342-8
- Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria vol.24, pp.8, 2010, https://doi.org/10.4014/jmb.1310.10099
- Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9 vol.49, pp.2, 2010, https://doi.org/10.1080/09670262.2014.895048
- Indole-3-acetic acid in plant-microbe interactions vol.106, pp.1, 2010, https://doi.org/10.1007/s10482-013-0095-y
- Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.00828
- Agronomic Biofortification of Amaranthus dubius with Macro Nutrients and Vitamin A vol.225, pp.None, 2017, https://doi.org/10.1088/1757-899x/225/1/012214
- Enhanced biomass production of Synechocystis sp. PCC 6803 by two associated bacteria Paenibacillus camelliae and Curtobacterium ammoniigenes vol.204, pp.1, 2010, https://doi.org/10.1007/s00203-021-02711-x