DOI QR코드

DOI QR Code

Production of Indole-3-Acetic Acid by the Cyanobacterium Arthrospira platensis Strain MMG-9

  • Ahmed, Mehboob (Department of Microbiology and Molecular Genetics, University of the Punjab) ;
  • Stal, Lucas J. (Department of Marine Microbiology, Netherlands Institute of Ecology - KNAW) ;
  • Hasnain, Shahida (Department of Microbiology and Molecular Genetics, University of the Punjab)
  • Received : 2010.04.21
  • Accepted : 2010.06.14
  • Published : 2010.09.28

Abstract

The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole-3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture of A. platensis strain MMG-9 and its identity was confirmed by thin-layer chromatography (TLC) as well as by high-performance liquid chromatography (HPLC). The IAA precursor L-tryptophan was required for IAA biosynthesis. Released IAA increased with the increase of the initial concentration of L-tryptophan in the medium and with the incubation time. A. platensis strain MMG-9 accumulated more IAA than it released into the medium. The bioactivity of the secreted IAA was shown by its effect on the formation of roots by Pisum sativum. There was a significant positive effect of the supernatant of cultures of A. platensis strain MMG-9 on the number of lateral roots of P. sativum, whereas a negative effect on root length was observed.

Keywords

References

  1. Ahmad, F., I. Ahmad, and M. S. Khan. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Barazani, O. and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25: 2397-2406. https://doi.org/10.1023/A:1020890311499
  4. Callis, J. 2005. Plant biology: Auxin action. Nature 435: 436-437.
  5. Christiansen-Weniger, C. 1998. Endophytic establishment of diazotrophic bacteria in auxin-induced tumors of cereal crops. Crit. Rev. Plant Sci. 17: 55-76. https://doi.org/10.1016/S0735-2689(98)00354-2
  6. Cohen, Z. 1997. The chemicals of Spirullina, pp. 175-204. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-Biology, and Biotechnology. CRC Press, London
  7. Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18. https://doi.org/10.3109/10408419509113531
  8. de-Bashan, L. E., H. Antoun, and Y. Bashan. 2008. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44: 938-947. https://doi.org/10.1111/j.1529-8817.2008.00533.x
  9. Dunlap, J. R. and K. M. Robacker. 1988. Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture media. Plant Physiol. 88: 379-382. https://doi.org/10.1104/pp.88.2.379
  10. Fierer, N. and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103: 626-631. https://doi.org/10.1073/pnas.0507535103
  11. George, E. A. 1976. Culture Centre of Algae and Protozoa. List of Strains 1976, 3rd Ed. Institute of Terrestrial Ecology, Natural Environmental Research Council, Cambridge.
  12. Glick, B. R., C. L. Patten, G. Holguim, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London; River Edge, NJ.
  13. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
  14. Gravel, V., H. Antoun, and R. J. Tweddell. 2007. Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur. J. Plant Pathol. 119: 457-462. https://doi.org/10.1007/s10658-007-9170-4
  15. Kende, H. and J. Zeevaart. 1997. The five "classical" plant hormones. Plant Cell 9: 1197-1210. https://doi.org/10.1105/tpc.9.7.1197
  16. Martinez, V. M., J. Osuna, O. Paredes-Lopez, and F. Guevara. 1997. Production of indole-3-acetic acid by several wild-type strains of Ustilago maydis. World J. Microbiol. Biotechnol. 13: 295-298. https://doi.org/10.1023/A:1018583007513
  17. McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20. https://doi.org/10.1093/nar/gkh435
  18. Nissen, P. 1985. Dose responses of auxins. Physiol. Plant. 65: 357-374. https://doi.org/10.1111/j.1399-3054.1985.tb08659.x
  19. Prasanna, R., P. Jaiswal, S. Nayak, A. Sood, and B. D. Kaushik. 2009. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49: 89-97. https://doi.org/10.1007/s12088-009-0009-x
  20. Ribnicky, D. M., N. Ilic, J. D. Cohen, and T. J. Cooke. 1996. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism - The implications for carrot somatic embryogenesis. Plant Physiol. 112: 549-558. https://doi.org/10.1104/pp.112.2.549
  21. Rossi, N., I. Petit, P. Jaouen, P. Legentilhomme, and M. Derouiniot. 2005. Harvesting of cyanobacterium Arthrospira platensis using inorganic filtration membranes. Separ. Sci. Technol. 40: 3033-3050. https://doi.org/10.1080/01496390500385046
  22. Sergeeva, E., A. Liaimer, and B. Bergman. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238. https://doi.org/10.1007/s00425-002-0749-x
  23. Sridevi, M. and K. V. Mallaiah. 2007. Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr. J. Microbiol. Res. 1: 125-128.
  24. Tandeau de Marsac, N. and J. Houmard. 1988. Complementary chromatic adaptation: Physiological conditions and action spectra. Methods Enzymol. 167: 318-328. https://doi.org/10.1016/0076-6879(88)67037-6
  25. Trabelsi, L., N. M'sakni, H. Ouada, H. Bacha, and S. Roudesli. 2009. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioproc. Eng. 14: 27-31. https://doi.org/10.1007/s12257-008-0102-8
  26. Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126. https://doi.org/10.1134/S0003683806020013
  27. Vestergard, M., L. Bjornlund, F. Henry, and R. Ronn. 2007. Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295: 115-125. https://doi.org/10.1007/s11104-007-9267-8
  28. Waterbury, J. 2006. The cyanobacteria - isolation, purification and identification, pp. 1053-1073. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes. Springer, The Netherlands.
  29. Yuan, Z. C., P. Liu, P. Saenkham, K. Kerr, and E. W. Nester. 2008. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium - plant interactions. J. Bacteriol. 190: 494-507. https://doi.org/10.1128/JB.01387-07

Cited by

  1. Endogenous auxins in plant growth-promoting Cyanobacteria-Anabaena vaginicola and Nostoc calcicola vol.25, pp.2, 2010, https://doi.org/10.1007/s10811-012-9872-7
  2. Characterization of IAA Production by the Mangrove Cyanobacterium Phormidium sp. MI405019 and Its Influence on Tobacco Seed Germination and Organogenesis vol.32, pp.4, 2010, https://doi.org/10.1007/s00344-013-9342-8
  3. Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria vol.24, pp.8, 2010, https://doi.org/10.4014/jmb.1310.10099
  4. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9 vol.49, pp.2, 2010, https://doi.org/10.1080/09670262.2014.895048
  5. Indole-3-acetic acid in plant-microbe interactions vol.106, pp.1, 2010, https://doi.org/10.1007/s10482-013-0095-y
  6. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.00828
  7. Agronomic Biofortification of Amaranthus dubius with Macro Nutrients and Vitamin A vol.225, pp.None, 2017, https://doi.org/10.1088/1757-899x/225/1/012214
  8. Enhanced biomass production of Synechocystis sp. PCC 6803 by two associated bacteria Paenibacillus camelliae and Curtobacterium ammoniigenes vol.204, pp.1, 2010, https://doi.org/10.1007/s00203-021-02711-x