References
- Bauer, A. W., W. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
- Babich, H. and A. Stern. 1993. In-vitro cytotoxicities of 1,4- naphthoquinone and hydroxylated 1,4-naphthoquinones to replicating cells. J. Appl. Toxicol. 13: 353-358. https://doi.org/10.1002/jat.2550130510
- Christoph, M. S., P. Klaus, W. Annette, S. Erwin, and J. C. Simon. 1999. Antibacterial activity of hyperforin from St. John's wort, against multiresistant Staphylococcus aureus and Grampositive bacteria. Lancet 353: 2129-2131.
- Djipa, C., M. Delmee, and J. Quetin. 2000. Antimicrobial activity of bark extracts of Syzygium jambos. J. Ethnopharmacol. 71: 307-313. https://doi.org/10.1016/S0378-8741(99)00186-5
- Drewes, S. E., F. Khan, S. F. V. Vuuren, and A. M. Viljoen. 2005. Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry 66: 1812-1816. https://doi.org/10.1016/j.phytochem.2005.05.024
- Gant, T. W., D. N. R. Rao, R. P. Mason, and G. M. Cohen. 1988. Redox cycling and sulfhydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65: 157-173. https://doi.org/10.1016/0009-2797(88)90052-X
- Iandolo, J. J. 1989. Genetic analysis of extracellular toxins of Staphylococcus aureus. Annu. Rev. Microbiol. 43: 375-402. https://doi.org/10.1146/annurev.mi.43.100189.002111
- Kersten, W. 1971. Inhibition of RNA synthesis by quinone antibiotics. Prog. Mol. Subcell. Biol. 2: 48-57.
- Kloos, W. E. and T. L. Bannerman. 1999. Staphylococcus and Micrococcus, pp. 264-282. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. ASM Press, Washington, DC.
- Koyama, J. 2006. Anti-infective quinone derivatives of recent patents. Recent Patents on Anti-Infect. Drug Discov. 1: 113-125. https://doi.org/10.2174/157489106775244073
- Kubo, I. and K. Fujita. 2001. Naturally occurring anti-Salmonella agents. J. Agric. Food Chem. 49: 5750-5754. https://doi.org/10.1021/jf010728e
- Laatsch, H. 1994. Conocurvone prototype of a new class of anti-HIV active compounds. Angew. Chem. Int. Ed. Engl. 33: 422-424. https://doi.org/10.1002/anie.199404221
- Lana, E. J. L., F. Carazza, and J. A. Takahashi. 2006. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem. 54: 2053-2056. https://doi.org/10.1021/jf052407z
- Lechner, D., M. Stavri, M. Oluwatuyi, R. Pereda-Miranda, and S. Gibbons. 2004. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 64: 331-335.
- Lin, Y. T., Y. I. Kwon, R. G. Labbe, and K. Shetty. 2005. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 71: 8558-8564. https://doi.org/10.1128/AEM.71.12.8558-8564.2005
- Meganathan, R. 2001. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitam. Horm. 61: 173-218. https://doi.org/10.1016/S0083-6729(01)61006-9
- Monks, T. J., R. P. Hanzlik, G. M. Cohen, D. Ross, and D. G. Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112: 2-16. https://doi.org/10.1016/0041-008X(92)90273-U
- Morel, C., F. R. Stermitz, G. Tegos, and K. Lewis. 2003. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 51: 5677-5679. https://doi.org/10.1021/jf0302714
- Muhammad, I., S. Takamatsu, L. A. Walker, J. S. Mossa, H. H. S. Fong, and F. S. El-Feraly. 2003. Cytotoxic and antioxidant activities of alkylated benzoquinones from Maesa lanceolata. Phytother. Res. 17: 887-891. https://doi.org/10.1002/ptr.1237
- Nohl, H., W. Jordan, and R. I. Youngman. 1986. Quinones in biology: Functions in electron transfer and oxygen activation. Adv. Free Rad. Biol. Med. 2: 211-279. https://doi.org/10.1016/S8755-9668(86)80030-8
- Pardee, A. B., Y. Z. Li, and C. J. Li. 2002. Cancer therapy with beta-lapachone. Cancer Drug Targets 2: 227-242. https://doi.org/10.2174/1568009023333854
- Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1983. Ascorbate-quinone interactions: Electrochemical, free radical, and cytotoxic properties. Proc. Natl. Acad. Sci. U.S.A. 80: 129-132. https://doi.org/10.1073/pnas.80.1.129
- Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1985. Enzyme-controlled scavenging of ascorbyl and 2,6-dimethoxysemiquinone free radicals in Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. U.S.A. 82:1439-1442. https://doi.org/10.1073/pnas.82.5.1439
- Powers, K. A., M. S. Terpenning, R. A. Voice, and C. A. Kauffman. 1990. Prosthetic joint infections in the elderly. Am. J. Med. 88: 9-13. https://doi.org/10.1016/0002-9343(90)90120-3
- Qabaja, G., E. M. Perchellet, J. P. Perchellet, and G. B. Jones. 2000. Regioselective lactonization of naphthoquinones: Synthesis and antitumoral activity of the WS-5995 antibiotics. Tetrahedron Lett. 41: 3007-3010. https://doi.org/10.1016/S0040-4039(00)00329-4
- Seung, S. A., J. Y. Lee, M. Y. Lee, J. S. Park, and J. H. Chung. 1998. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets. Chem. Biol. Interact. 113: 133-144. https://doi.org/10.1016/S0009-2797(98)00024-6
- Shetty, K. and Y. T. Lin. 2005. Phenolic antimicrobials from plants for control of bacterial pathogens, pp. 1481-1505. In K. Shetty, G. Paliyath, A. L. Pometto, and R. E. Levin (eds.). Food Biotechnology. CRC Press, Boca Raton.
- Tegos, G., F. R. Stermitz, O. Lomovskaya, and K. Lewis. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 46: 3133-3141. https://doi.org/10.1128/AAC.46.10.3133-3141.2002
- Tomoskozi-Farkas, R. and H. G. Daood. 2004. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatogr. Suppl. 60: 227-230.
Cited by
- Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ vol.12, pp.None, 2010, https://doi.org/10.1186/1475-2859-12-105
- 국내산 보리와 밀 추출물의 항산화 및 항균 활성 vol.42, pp.7, 2010, https://doi.org/10.3746/jkfn.2013.42.7.1003
- 보골지, 오미자, 계혈등 추출물의 항균활성 vol.45, pp.4, 2013, https://doi.org/10.9721/kjfst.2013.45.4.495
- Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Three Species of the GenusPyrus vol.20, pp.4, 2014, https://doi.org/10.1089/mdr.2013.0155
- Antiproliferative and antimicrobial activities of alkylbenzoquinone derivatives from Ardisia kivuensis vol.52, pp.3, 2010, https://doi.org/10.3109/13880209.2013.837076
- Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata vol.52, pp.9, 2010, https://doi.org/10.3109/13880209.2013.877493
- Antibacterial effect of sprouts against human pathogens in vitro vol.43, pp.3, 2010, https://doi.org/10.1556/aalim.43.2014.3.18
- Effect of Fermented Wheat Germ Extract with Lactobacillus plantarum dy-1 on HT-29 Cell Proliferation and Apoptosis vol.63, pp.9, 2010, https://doi.org/10.1021/acs.jafc.5b00041
- An Alternative Synthesis of 2,6-Dimethoxyl-1,4-Benzoquinone vol.41, pp.4, 2010, https://doi.org/10.3184/174751917x14894997017379
- Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages vol.9, pp.7, 2010, https://doi.org/10.3390/nu9070730
- Catalytic wet peroxide oxidation of 4-Nitrophenol over Al-Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction vol.205, pp.5, 2010, https://doi.org/10.1080/00986445.2017.1412310
- Laccase-catalysed cleavage of malvidin-3-O-galactoside to 2,6-dimethoxy-1,4-benzoquinone and a coumarin galactoside vol.17, pp.6, 2010, https://doi.org/10.1007/s11557-018-1380-y
- Isolation of Antimicrobial Compounds From Cnestis ferruginea Vahl ex. DC (Connaraceae) Leaves Through Bioassay-Guided Fractionation vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00705
- Antimicrobial agent isolated from Coptidis rhizome extract incubated with Rhodococcus sp. strain BD7100 vol.72, pp.2, 2019, https://doi.org/10.1038/s41429-018-0114-3
- Inhibitory Effect of Coenzyme Q0 on the Growth of Staphylococcus aureus vol.16, pp.5, 2010, https://doi.org/10.1089/fpd.2018.2559
- 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom vol.116, pp.26, 2019, https://doi.org/10.1073/pnas.1812334116
- Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones vol.11, pp.18, 2010, https://doi.org/10.4155/fmc-2019-0032
- Study of all stages of the Diels–Alder reaction of cyclopentadiene with 2,3‐dicyano‐1,4‐benzoquinone and monoadducts: Kinetics, thermochemistry, and high pressure effect vol.52, pp.5, 2010, https://doi.org/10.1002/kin.21350
- Evaluation of Anthocyanin Content, Antioxidant Potential and Antimicrobial Activity of Black, Purple and Blue Colored Wheat Flour and Wheat-Grass Juice against Common Human Pathogens vol.25, pp.24, 2020, https://doi.org/10.3390/molecules25245785
- The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance vol.26, pp.14, 2021, https://doi.org/10.3390/molecules26144277
- A Natural Alternative Treatment for Urinary Tract Infections: Itxasol©, the Importance of the Formulation vol.26, pp.15, 2010, https://doi.org/10.3390/molecules26154564
- Sharp difference in the rate of formation and stability of the Diels–Alder reaction adducts with 2,3‐dicyano‐1,4‐benzoquinone and N‐phenylimide‐1,4‐benzoquino vol.53, pp.12, 2021, https://doi.org/10.1002/kin.21534
- Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition vol.373, pp.no.pa, 2022, https://doi.org/10.1016/j.foodchem.2021.131392