DOI QR코드

DOI QR Code

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract

  • Received : 2010.04.07
  • Accepted : 2010.05.02
  • Published : 2010.08.28

Abstract

We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.

Keywords

References

  1. Bauer, A. W., W. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  2. Babich, H. and A. Stern. 1993. In-vitro cytotoxicities of 1,4- naphthoquinone and hydroxylated 1,4-naphthoquinones to replicating cells. J. Appl. Toxicol. 13: 353-358. https://doi.org/10.1002/jat.2550130510
  3. Christoph, M. S., P. Klaus, W. Annette, S. Erwin, and J. C. Simon. 1999. Antibacterial activity of hyperforin from St. John's wort, against multiresistant Staphylococcus aureus and Grampositive bacteria. Lancet 353: 2129-2131.
  4. Djipa, C., M. Delmee, and J. Quetin. 2000. Antimicrobial activity of bark extracts of Syzygium jambos. J. Ethnopharmacol. 71: 307-313. https://doi.org/10.1016/S0378-8741(99)00186-5
  5. Drewes, S. E., F. Khan, S. F. V. Vuuren, and A. M. Viljoen. 2005. Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry 66: 1812-1816. https://doi.org/10.1016/j.phytochem.2005.05.024
  6. Gant, T. W., D. N. R. Rao, R. P. Mason, and G. M. Cohen. 1988. Redox cycling and sulfhydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65: 157-173. https://doi.org/10.1016/0009-2797(88)90052-X
  7. Iandolo, J. J. 1989. Genetic analysis of extracellular toxins of Staphylococcus aureus. Annu. Rev. Microbiol. 43: 375-402. https://doi.org/10.1146/annurev.mi.43.100189.002111
  8. Kersten, W. 1971. Inhibition of RNA synthesis by quinone antibiotics. Prog. Mol. Subcell. Biol. 2: 48-57.
  9. Kloos, W. E. and T. L. Bannerman. 1999. Staphylococcus and Micrococcus, pp. 264-282. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.). Manual of Clinical Microbiology. ASM Press, Washington, DC.
  10. Koyama, J. 2006. Anti-infective quinone derivatives of recent patents. Recent Patents on Anti-Infect. Drug Discov. 1: 113-125. https://doi.org/10.2174/157489106775244073
  11. Kubo, I. and K. Fujita. 2001. Naturally occurring anti-Salmonella agents. J. Agric. Food Chem. 49: 5750-5754. https://doi.org/10.1021/jf010728e
  12. Laatsch, H. 1994. Conocurvone prototype of a new class of anti-HIV active compounds. Angew. Chem. Int. Ed. Engl. 33: 422-424. https://doi.org/10.1002/anie.199404221
  13. Lana, E. J. L., F. Carazza, and J. A. Takahashi. 2006. Antibacterial evaluation of 1,4-benzoquinone derivatives. J. Agric. Food Chem. 54: 2053-2056. https://doi.org/10.1021/jf052407z
  14. Lechner, D., M. Stavri, M. Oluwatuyi, R. Pereda-Miranda, and S. Gibbons. 2004. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 64: 331-335.
  15. Lin, Y. T., Y. I. Kwon, R. G. Labbe, and K. Shetty. 2005. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 71: 8558-8564. https://doi.org/10.1128/AEM.71.12.8558-8564.2005
  16. Meganathan, R. 2001. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms. Vitam. Horm. 61: 173-218. https://doi.org/10.1016/S0083-6729(01)61006-9
  17. Monks, T. J., R. P. Hanzlik, G. M. Cohen, D. Ross, and D. G. Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112: 2-16. https://doi.org/10.1016/0041-008X(92)90273-U
  18. Morel, C., F. R. Stermitz, G. Tegos, and K. Lewis. 2003. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem. 51: 5677-5679. https://doi.org/10.1021/jf0302714
  19. Muhammad, I., S. Takamatsu, L. A. Walker, J. S. Mossa, H. H. S. Fong, and F. S. El-Feraly. 2003. Cytotoxic and antioxidant activities of alkylated benzoquinones from Maesa lanceolata. Phytother. Res. 17: 887-891. https://doi.org/10.1002/ptr.1237
  20. Nohl, H., W. Jordan, and R. I. Youngman. 1986. Quinones in biology: Functions in electron transfer and oxygen activation. Adv. Free Rad. Biol. Med. 2: 211-279. https://doi.org/10.1016/S8755-9668(86)80030-8
  21. Pardee, A. B., Y. Z. Li, and C. J. Li. 2002. Cancer therapy with beta-lapachone. Cancer Drug Targets 2: 227-242. https://doi.org/10.2174/1568009023333854
  22. Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1983. Ascorbate-quinone interactions: Electrochemical, free radical, and cytotoxic properties. Proc. Natl. Acad. Sci. U.S.A. 80: 129-132. https://doi.org/10.1073/pnas.80.1.129
  23. Pethig, R., P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent- Gyorgyi. 1985. Enzyme-controlled scavenging of ascorbyl and 2,6-dimethoxysemiquinone free radicals in Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. U.S.A. 82:1439-1442. https://doi.org/10.1073/pnas.82.5.1439
  24. Powers, K. A., M. S. Terpenning, R. A. Voice, and C. A. Kauffman. 1990. Prosthetic joint infections in the elderly. Am. J. Med. 88: 9-13. https://doi.org/10.1016/0002-9343(90)90120-3
  25. Qabaja, G., E. M. Perchellet, J. P. Perchellet, and G. B. Jones. 2000. Regioselective lactonization of naphthoquinones: Synthesis and antitumoral activity of the WS-5995 antibiotics. Tetrahedron Lett. 41: 3007-3010. https://doi.org/10.1016/S0040-4039(00)00329-4
  26. Seung, S. A., J. Y. Lee, M. Y. Lee, J. S. Park, and J. H. Chung. 1998. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets. Chem. Biol. Interact. 113: 133-144. https://doi.org/10.1016/S0009-2797(98)00024-6
  27. Shetty, K. and Y. T. Lin. 2005. Phenolic antimicrobials from plants for control of bacterial pathogens, pp. 1481-1505. In K. Shetty, G. Paliyath, A. L. Pometto, and R. E. Levin (eds.). Food Biotechnology. CRC Press, Boca Raton.
  28. Tegos, G., F. R. Stermitz, O. Lomovskaya, and K. Lewis. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 46: 3133-3141. https://doi.org/10.1128/AAC.46.10.3133-3141.2002
  29. Tomoskozi-Farkas, R. and H. G. Daood. 2004. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatogr. Suppl. 60: 227-230.

Cited by

  1. Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ vol.12, pp.None, 2010, https://doi.org/10.1186/1475-2859-12-105
  2. 국내산 보리와 밀 추출물의 항산화 및 항균 활성 vol.42, pp.7, 2010, https://doi.org/10.3746/jkfn.2013.42.7.1003
  3. 보골지, 오미자, 계혈등 추출물의 항균활성 vol.45, pp.4, 2013, https://doi.org/10.9721/kjfst.2013.45.4.495
  4. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Three Species of the GenusPyrus vol.20, pp.4, 2014, https://doi.org/10.1089/mdr.2013.0155
  5. Antiproliferative and antimicrobial activities of alkylbenzoquinone derivatives from Ardisia kivuensis vol.52, pp.3, 2010, https://doi.org/10.3109/13880209.2013.837076
  6. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata vol.52, pp.9, 2010, https://doi.org/10.3109/13880209.2013.877493
  7. Antibacterial effect of sprouts against human pathogens in vitro vol.43, pp.3, 2010, https://doi.org/10.1556/aalim.43.2014.3.18
  8. Effect of Fermented Wheat Germ Extract with Lactobacillus plantarum dy-1 on HT-29 Cell Proliferation and Apoptosis vol.63, pp.9, 2010, https://doi.org/10.1021/acs.jafc.5b00041
  9. An Alternative Synthesis of 2,6-Dimethoxyl-1,4-Benzoquinone vol.41, pp.4, 2010, https://doi.org/10.3184/174751917x14894997017379
  10. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages vol.9, pp.7, 2010, https://doi.org/10.3390/nu9070730
  11. Catalytic wet peroxide oxidation of 4-Nitrophenol over Al-Fe PILC: Kinetic study using Fermi’s equation and mechanistic pathways based on TOC reduction vol.205, pp.5, 2010, https://doi.org/10.1080/00986445.2017.1412310
  12. Laccase-catalysed cleavage of malvidin-3-O-galactoside to 2,6-dimethoxy-1,4-benzoquinone and a coumarin galactoside vol.17, pp.6, 2010, https://doi.org/10.1007/s11557-018-1380-y
  13. Isolation of Antimicrobial Compounds From Cnestis ferruginea Vahl ex. DC (Connaraceae) Leaves Through Bioassay-Guided Fractionation vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00705
  14. Antimicrobial agent isolated from Coptidis rhizome extract incubated with Rhodococcus sp. strain BD7100 vol.72, pp.2, 2019, https://doi.org/10.1038/s41429-018-0114-3
  15. Inhibitory Effect of Coenzyme Q0 on the Growth of Staphylococcus aureus vol.16, pp.5, 2010, https://doi.org/10.1089/fpd.2018.2559
  16. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom vol.116, pp.26, 2019, https://doi.org/10.1073/pnas.1812334116
  17. Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones vol.11, pp.18, 2010, https://doi.org/10.4155/fmc-2019-0032
  18. Study of all stages of the Diels–Alder reaction of cyclopentadiene with 2,3‐dicyano‐1,4‐benzoquinone and monoadducts: Kinetics, thermochemistry, and high pressure effect vol.52, pp.5, 2010, https://doi.org/10.1002/kin.21350
  19. Evaluation of Anthocyanin Content, Antioxidant Potential and Antimicrobial Activity of Black, Purple and Blue Colored Wheat Flour and Wheat-Grass Juice against Common Human Pathogens vol.25, pp.24, 2020, https://doi.org/10.3390/molecules25245785
  20. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance vol.26, pp.14, 2021, https://doi.org/10.3390/molecules26144277
  21. A Natural Alternative Treatment for Urinary Tract Infections: Itxasol©, the Importance of the Formulation vol.26, pp.15, 2010, https://doi.org/10.3390/molecules26154564
  22. Sharp difference in the rate of formation and stability of the Diels–Alder reaction adducts with 2,3‐dicyano‐1,4‐benzoquinone and N‐phenylimide‐1,4‐benzoquino vol.53, pp.12, 2021, https://doi.org/10.1002/kin.21534
  23. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition vol.373, pp.no.pa, 2022, https://doi.org/10.1016/j.foodchem.2021.131392