참고문헌
- Becker, J., C. Klopprogge, A. Herold, O. Zelder, C. J. Bolten, and C. Wittmann. 2007. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum - over expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109. https://doi.org/10.1016/j.jbiotec.2007.05.026
- Becker, J., C. Klopprogge, H. Schröder, and C. Wittmann. 2009. Tricarboxylic acid cycle engineering for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 7866-7869. https://doi.org/10.1128/AEM.01942-09
- Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596. https://doi.org/10.1128/AEM.71.12.8587-8596.2005
- Bolten, C. J., P. Kiefer, F. Letisse, J. C. Portais, and C. Wittmann. 2007. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79: 3843-3849. https://doi.org/10.1021/ac0623888
- Bonnarme, P., L. Psoni, and H. E. Spinnler. 2000. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl. Environ. Microbiol. 66: 5514-5517. https://doi.org/10.1128/AEM.66.12.5514-5517.2000
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Dickschat, J. S., H. B. Bode, S. C. Wenzel, R. Muller, and S. Schulz. 2005. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6: 2023-2033. https://doi.org/10.1002/cbic.200500174
- Dickschat, J. S., T. Martens, T. Brinkhoff, M. Simon, and S. Schulz. 2005. Volatiles released by a Streptomyces species isolated from the North Sea. Chem. Biodivers. 2: 837-865. https://doi.org/10.1002/cbdv.200590062
- Flavin, M. and C. Slaughter. 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim. Biophys. Acta 132: 400-405. https://doi.org/10.1016/0005-2744(67)90158-1
- Foglino, M., F. Borne, M. Bally, G. Ball, and J. C. Patte. 1995. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141: 431-439. https://doi.org/10.1099/13500872-141-2-431
- Hwang, B. J., H. J. Yeom, Y. Kim, and H. S. Lee. 2002. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J. Bacteriol. 184: 1277-1286. https://doi.org/10.1128/JB.184.5.1277-1286.2002
- Ikeda, M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
- Iwatani, S., S. Van Dien, K. Shimbo, K. Kubota, N. Kageyama, D. Iwahata, et al. 2007. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J. Biotechnol. 128: 93-111. https://doi.org/10.1016/j.jbiotec.2006.09.004
- Kanzaki, H., M. Kobayashi, T. Nagasawa, and H. Yamada. 1987. Purification and characterization of cystathionine γ- synthase type II from Bacillus sphaericus. Eur. J. Biochem. 163: 105-112. https://doi.org/10.1111/j.1432-1033.1987.tb10742.x
- Kiefer, P., E. Heinzle, O. Zelder, and C. Wittmann. 2004. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl. Environ. Microbiol. 70: 229-239. https://doi.org/10.1128/AEM.70.1.229-239.2004
- Kiene, R. P., L. J. Linn, J. Gonzalez, M. A. Moran, and J. A. Bruton. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65: 4549-4558.
- Kromer, J. O., C. J. Bolten, E. Heinzle, H. Schröder, and C. Wittmann. 2008. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154: 3917-3930. https://doi.org/10.1099/mic.0.2008/021204-0
- Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173. https://doi.org/10.1016/j.ab.2005.01.027
- Kromer, J. O., E. Heinzle, H. Schröder, and C. Wittmann. 2006. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J. Bacteriol. 188: 609-618. https://doi.org/10.1128/JB.188.2.609-618.2006
- Kromer, J. O., C. Wittmann, H. Schröder, and E. Heinzle. 2006. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab. Eng. 8: 353-369. https://doi.org/10.1016/j.ymben.2006.02.001
- Lee, H. S. 2005. Sulfur metabolism and its regulation, pp. 351- 376. In L. Eggeling and M. Bott (eds.). Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton.
- Lee, H. S. and B. J. Hwang. 2003. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: Parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol. 62: 459-467. https://doi.org/10.1007/s00253-003-1306-7
- Mampel, J., H. Schröder, S. Haefner, and U. Sauer. 2005. Single-gene knockout of a novel regulatory element confers methionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 68: 228-236. https://doi.org/10.1007/s00253-005-1893-6
- Mondal, S., Y. B. Das, and S. P. Chatterjee. 1994. Improvement of L-methionine production by double auxotrophic mutants of Brevibacterium heali LT5 and LT18. Res. Ind. 39: 239-241.
- Mondal, S., Y. B. Das, and S. P. Chatterjee. 1996. Methionine production by microorganisms. Folia Microbiol. (Praha) 41: 465-472. https://doi.org/10.1007/BF02814659
- Park, S. D., J. Y. Lee, S. Y. Sim, Y. Kim, and H. S. Lee. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336. https://doi.org/10.1016/j.ymben.2007.05.001
- Wittmann, C. 2007. Fluxome analysis using GC-MS. Microb. Cell Fact 6: 6. https://doi.org/10.1186/1475-2859-6-6
- Wittmann, C. and J. Becker. 2007. The L-lysine story: From metabolic pathways to industrial production. Microbiol. Monogr. 5: 39-70. https://doi.org/10.1007/7171_2006_089
- Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287. https://doi.org/10.1128/AEM.70.12.7277-7287.2004
- Wittmann, C., J. O. Krömer, P. Kiefer, T. Binz, and E. Heinzle. 2004. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem. 327: 135-139. https://doi.org/10.1016/j.ab.2004.01.002
- Yamagata, S. 1971. Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. J. Biochem. (Tokyo) 70: 1035-1045. https://doi.org/10.1093/oxfordjournals.jbchem.a129712
피인용 문헌
- Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose vol.6, pp.3, 2010, https://doi.org/10.1002/biot.201000304
- Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum vol.13, pp.5, 2011, https://doi.org/10.1016/j.ymben.2011.07.006
- Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development vol.23, pp.5, 2012, https://doi.org/10.1016/j.copbio.2011.12.025
- A RubisCO like protein links SAM metabolism with isoprenoid biosynthesis vol.8, pp.11, 2010, https://doi.org/10.1038/nchembio.1087
- Methionine production-a critical review vol.98, pp.24, 2010, https://doi.org/10.1007/s00253-014-6156-y
- Bacterial methionine biosynthesis vol.160, pp.8, 2010, https://doi.org/10.1099/mic.0.077826-0
- Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins vol.19, pp.1, 2014, https://doi.org/10.3390/molecules19011004
- Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum vol.15, pp.None, 2010, https://doi.org/10.1186/s12866-015-0558-6
- Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten vol.127, pp.11, 2010, https://doi.org/10.1002/ange.201409033
- Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products vol.54, pp.11, 2010, https://doi.org/10.1002/anie.201409033
- Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique” vol.1, pp.4, 2010, https://doi.org/10.1128/msystems.00068-16
- Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-016-0553-0
- Molecular evolution and expression divergence of three key Met biosynthetic genes in plants: CGS , HMT and MMT vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.6023
- Revisiting the methionine salvage pathway and its paralogues vol.12, pp.1, 2010, https://doi.org/10.1111/1751-7915.13324
- Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01313
- Modular systems metabolic engineering enables balancing of relevant pathways for L -histidine production with Corynebacterium glutamicum vol.12, pp.None, 2010, https://doi.org/10.1186/s13068-019-1410-2
- Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in Ruegeria Species vol.11, pp.2, 2010, https://doi.org/10.1128/mbio.00329-20
- An Engineered Escherichia coli Strain with Synthetic Metabolism for in‐Cell Production of Translationally Active Methionine Derivatives vol.21, pp.24, 2010, https://doi.org/10.1002/cbic.202000257
- Production of L-Methionine from 3-Methylthiopropionaldehyde and O-Acetylhomoserine by Catalysis of the Yeast O-Acetylhomoserine Sulfhydrylase vol.69, pp.28, 2010, https://doi.org/10.1021/acs.jafc.1c02419