참고문헌
- Alper, H., Y. S. Jin, J. F. Moxley, and G. Stephanopoulos. 2005. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7: 155-164. https://doi.org/10.1016/j.ymben.2004.12.003
- Alper, H., K. Miyaoku, and G. Stephanopoulos. 2005. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23: 612-616. https://doi.org/10.1038/nbt1083
- Alper, H. and G. Stephanopoulos. 2007. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab. Eng. 9: 258-267. https://doi.org/10.1016/j.ymben.2006.12.002
- Barnell, W. O., K. C. Yi, and T. Conway. 1990. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J. Bacteriol. 172: 7227-7240.
- Baumler, D. J., K. F. Hung, J. L. Bose, B. M. Vykhodets, C. M. Cheng, K. C. Jeong, and C. W. Kaspar. 2006. Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide. Appl. Biochem. Biotechnol. 134: 15-26. https://doi.org/10.1385/ABAB:134:1:15
- Conway, T., Y. A. Osman, J. I. Konnan, E. M. Hoffmann, and L. O. Ingram. 1987. Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J. Bacteriol. 169: 949-954.
- Earl, A. M., M. M. Mohundro, I. S. Mian, and J. R. Battista. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 123: 6216-6224.
- Galani, T. M. A. A. 1992. Chemical and UV mutagenesis in Zymomonas mobilis. Genetica 87: 37-45. https://doi.org/10.1007/BF00128771
- Gao, G., B. Tian, L. Liu, D. Sheng, B. Shen, and Y. Hua. 2003. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair (Amst) 2: 1419-1427. https://doi.org/10.1016/j.dnarep.2003.08.012
- Haber, J. E., D. T. Rogers, and J. H. McCusker. 1980. Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell 22: 277-289. https://doi.org/10.1016/0092-8674(80)90175-0
- Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66: 373-395, table of contents. https://doi.org/10.1128/MMBR.66.3.373-395.2002
- Hirasawa, T., K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu, and S. Shioya. 2007. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 131: 34-44. https://doi.org/10.1016/j.jbiotec.2007.05.010
- Hua, Y., I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen. 2003. PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Communication 306: 354-360. https://doi.org/10.1016/S0006-291X(03)00965-3
- Joachimsthal, E. L. and P. L. Rogers. 2000. Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl. Biochem. Biotechnol. 84-86: 343-356. https://doi.org/10.1385/ABAB:84-86:1-9:343
- Kajiwara, S, K. Suga, H. Sone, and K. Nakamura. 2000. Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering. Biotechnol. Lett. 22: 1839-1843. https://doi.org/10.1023/A:1005632522620
- Kim, I. S., K. D. Barrow, and P. L. Rogers. 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86: 357-370. https://doi.org/10.1385/ABAB:84-86:1-9:357
- Kobayashi, A., H. Hirakawa, T. Hirata, K. Nishino, and A. Yamaguchi. 2006. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J. Bacteriol. 188: 5693-5703. https://doi.org/10.1128/JB.00217-06
- Lawford, H. G. 1992. The effect of lactic acid on fuel ethanol production by Zymomonas. Appl. Biochem. Biotechnol. 34-35: 205-216. https://doi.org/10.1007/BF02920546
- Mackenzie, K. F., C. K. Eddy, and L. O. Ingram. 1989. Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J. Bacteriol. 171: 1063-1067.
- Makarova, K. S., M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, et al. 2007. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS ONE 2: e955. https://doi.org/10.1371/journal.pone.0000955
- Michel, G. P. and J. Starka. 1986. Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J. Bacteriol. 165: 1040-1042.
- Miller, E. N. and L. O. Ingram. 2007. Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium. Biotechnol. Lett. 29: 213-217. https://doi.org/10.1007/s10529-006-9226-0
- Neale, A. D., R. K. Scopes, J. M. Kelly, and R. E. Wettenhall. 1986. The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur. J. Biochem. 154: 119-124. https://doi.org/10.1111/j.1432-1033.1986.tb09366.x
- Osman, Y. A. and L. O. Ingram. 1985. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J. Bacteriol. 164: 173-180.
- Pan, J., J. Z. Wang, Z. Yan, Y. Zhang, W. Lu, W. Ping, et al. 2009. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS ONE 4: e4422. https://doi.org/10.1371/journal.pone.0004422
- Park, S. C. and J. Baratti. 1991. Batch fermentation kinetics of sugar beet molasses by Zymomonas mobilis. Biotechnol. Bioeng. 38: 304-313. https://doi.org/10.1002/bit.260380312
- Purvis, J. E., L. P. Yomano, and L. O. Ingram. 2005. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 71: 3761-3769. https://doi.org/10.1128/AEM.71.7.3761-3769.2005
- Seo, J. S. C., H. Park, H. S. Yoon, K. O. Jung, C. Kim, J. J. Hong, et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23: 63-68. https://doi.org/10.1038/nbt1045
- Tao, F., J. Y. Miao, G. Y. Shi, and K. C. Zhang. 2005. Ethanol fermentation by an acid-tolerant Zymomonas mobilis under nonsterilized condition. Process Biochem. 40: 183-187. https://doi.org/10.1016/j.procbio.2003.11.054
- Thanonkeo, P., P. Laopaiboon, K. Sootsuwan, and M. Yamada. 2007. Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnology 6: 112-119. https://doi.org/10.3923/biotech.2007.112.119
- van Voorst, F., J. Houghton-Larsen, L. Jonson, M. C. Kielland- Brandt, and A. Brandt. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23: 351-359. https://doi.org/10.1002/yea.1359
- Vijayakumar, S. R., M. G. Kirchhof, C. L. Patten, and H. E. Schellhorn. 2004. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J. Bacteriol. 186: 8499-8507. https://doi.org/10.1128/JB.186.24.8499-8507.2004
- Vujicic-Zagar, A., R. Dulermo, M. Le Gorrec, F. Vannier, P. Servant, S. Sommer, A. de Groot, and L. Serre. 2009. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J. Mol. Biol. 386: 704-716. https://doi.org/10.1016/j.jmb.2008.12.062
- Weber, A., S. A. Kogl, and K. Jung. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188: 7165-7175. https://doi.org/10.1128/JB.00508-06
- Weber, H., T. Polen, J. Heuveling, V. F. Wendisch, and R. Hengge. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: SigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187: 1591-1603. https://doi.org/10.1128/JB.187.5.1591-1603.2005
- Young, J. J., C. J. Svenson, E. L. Joachimsthal, and P. L. Rogers. 2002. Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnology Letters 24: 819-824. https://doi.org/10.1023/A:1015546521000
피인용 문헌
- Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans , Enhance Stress Tolerances of Escherichia coli vol.6, pp.1, 2011, https://doi.org/10.1371/journal.pone.0016228
- Oxidative Stress Resistance inDeinococcus radiodurans vol.75, pp.1, 2010, https://doi.org/10.1128/mmbr.00015-10
- Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates vol.109, pp.12, 2010, https://doi.org/10.1002/bit.24574
- Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses vol.6, pp.None, 2010, https://doi.org/10.1186/1754-6834-6-180
- Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates vol.9, pp.1, 2013, https://doi.org/10.1038/msb.2013.30
- Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics vol.5, pp.None, 2010, https://doi.org/10.3389/fmicb.2014.00246
- Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate vol.8, pp.None, 2010, https://doi.org/10.1186/s13068-015-0233-z
- Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock vol.11, pp.4, 2010, https://doi.org/10.1039/c5mb00080g
- Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein vol.99, pp.12, 2010, https://doi.org/10.1007/s00253-015-6577-2
- Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors vol.99, pp.13, 2015, https://doi.org/10.1007/s00253-015-6616-z
- Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing vol.108, pp.1, 2010, https://doi.org/10.1007/s10482-015-0476-5
- Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis vol.10, pp.11, 2010, https://doi.org/10.1371/journal.pone.0142918
- Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-015-0398-y
- Microbial processing of fruit and vegetable wastes into potential biocommodities: a review vol.38, pp.1, 2018, https://doi.org/10.1080/07388551.2017.1311295
- IrrE Improves Organic Solvent Tolerance and Δ1-Dehydrogenation Productivity of Arthrobacter simplex vol.66, pp.20, 2010, https://doi.org/10.1021/acs.jafc.8b01311
- Advances and prospects in metabolic engineering of Zymomonas mobilis vol.50, pp.None, 2018, https://doi.org/10.1016/j.ymben.2018.04.001
- Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis vol.5, pp.None, 2010, https://doi.org/10.1186/s40643-018-0193-9
- New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis vol.103, pp.5, 2010, https://doi.org/10.1007/s00253-019-09620-6
- Construction of a Robust Sphingomonas sp. Strain for Welan Gum Production via the Expression of Global Transcriptional Regulator IrrE vol.8, pp.None, 2010, https://doi.org/10.3389/fbioe.2020.00674
- Impact of hfq and sig E on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses vol.15, pp.10, 2020, https://doi.org/10.1371/journal.pone.0240330
- Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast vol.13, pp.None, 2010, https://doi.org/10.1186/s13068-020-01833-6
- Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast vol.13, pp.None, 2010, https://doi.org/10.1186/s13068-020-01833-6
- Improving Biotransformation Efficiency of Arthrobacter simplex by Enhancement of Cell Stress Tolerance and Enzyme Activity vol.69, pp.2, 2010, https://doi.org/10.1021/acs.jafc.0c06592
- A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species vol.7, pp.1, 2021, https://doi.org/10.1038/s41421-021-00246-5