DOI QR코드

DOI QR Code

Can a Fermentation Gas Mainly Produced by Rumen Isotrichidae Ciliates be a Potential Source of Biohydrogen and a Fuel for a Chemical Fuel Cell?

  • Piela, Piotr (Industrial Chemistry Research Institute) ;
  • Michalowski, Tadeusz (Institute of Animal Physiology and Nutrition, Polish Academy of Sciences) ;
  • Miltko, Renata (Institute of Animal Physiology and Nutrition, Polish Academy of Sciences) ;
  • Szewczyk, Krzysztof W. (Faculty of Chemical and Process Engineering, Warsaw University of Technology) ;
  • Sikora, Radoslaw (Institute of Radioelectronics, Warsaw University of Technology) ;
  • Grzesiuk, Elzbieta (Institute of Biochemistry and Biophysics, Polish Academy of Sciences) ;
  • Sikora, Anna (Institute of Biochemistry and Biophysics, Polish Academy of Sciences)
  • Received : 2010.01.28
  • Accepted : 2010.04.18
  • Published : 2010.07.28

Abstract

Bacteria, fungi, and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi; and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol $H_2$ per mole of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of $1.66\;kW/m^2$ (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was $128\;W/m^3$ but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 h.

Keywords

References

  1. Abou Akkada, A. R. and B. H. Howard. 1960. The biochemistry of rumen protozoa. 3. The carbohydrate metabolism of Entodinium. Biochem. J. 76: 445-451.
  2. Aelterman, P., K. Rabaey, T. H. Pham, N. Boon, and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394. https://doi.org/10.1021/es0525511
  3. Bonhomme, A., G. Fonty, M. J. Foglietti, D. Robic, and M. Weber. 1986. Endo-1,4-$\beta$-glucanase and $\beta$-glucosidase in the ciliate Polyplastron multivesiculatum free of cellulolytic bacteria. Can. J. Microbiol. 32: 219-225. https://doi.org/10.1139/m86-044
  4. Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21: 2015-2045. https://doi.org/10.1016/j.bios.2006.01.030
  5. Coleman, G. S., J. I. Davies, and M. A. Cash. 1972. The cultivation of the rumen ciliates Epidinium ecaudatum caudatum and Polyplastron multivesiculatum in vitro. J. Gen. Microbiol. 73: 509-521. https://doi.org/10.1099/00221287-73-3-509
  6. Czerkawski, J. W. 1986. An Introduction to Rumen Studies. Pergamon Press, Oxford, New York, Toronto, Sydney, Frankfurt.
  7. Das, D. and T. N. Veziroglu. 2008. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 33: 6046-6057. https://doi.org/10.1016/j.ijhydene.2008.07.098
  8. Dehority, B. A. and C. G. Orpin. 1997. Development of, and natural fluctuations in, rumen microbial populations, pp. 196-245. In P. N. Hobson, and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
  9. Ellis, J. E., P. S. McIntyre, M. Saleh, A. G. Williams, and D. Lloyd. 1991. Influence of $CO_2$ and low concentration of $O_2$ on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl. Environ. Microbiol. 57: 1400-1407.
  10. Fan, Y., H. Hu, and H. Liu. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 171: 348-354. https://doi.org/10.1016/j.jpowsour.2007.06.220
  11. Fan, Y., H. Hu, and H. Liu. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41: 8154-8158. https://doi.org/10.1021/es071739c
  12. Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis. 2000. Microalgae: A green source of renewable $H_2$. Trends Biotechnol. 18: 506-511. https://doi.org/10.1016/S0167-7799(00)01511-0
  13. Gijzen, H. J., K. B. Zwart, F. J. Verhagen, and G. P. Vogels. 1988. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol. Bioeng. 31: 418-425. https://doi.org/10.1002/bit.260310505
  14. Hallenbeck, P. C. and D. Ghosh. 2009. Advances in biohydrogen production: The way forward. Trends Biotechnol. 27: 287-297. https://doi.org/10.1016/j.tibtech.2009.02.004
  15. Hungate, R. E. 1942. The cultivation of Eudiplodinium neglectum with experiments on the digestion of cellulose. Biol. Bull. Mar. Biol. Lab. Woods Hole 83: 303-319. https://doi.org/10.2307/1538229
  16. Jounany, J. P., T. Michalowski, S. Toillon, and J. Senaud. 1994. Contribution of the rumen ciliate Polyplastron multivesiculatum to the degradation and fermentation of crystalline or soluble cellulose. Annu. Zootech. 43 (Suppl. 1): 22S. https://doi.org/10.1051/animres:19940523
  17. Jung, G.-B., K.-F. Lo, A. Su, F.-B. Weng, C.-H. Tu, T.-F. Yang, and S.-H. Chan. 2008. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell. Int. J. Hydrogen Energy 33: 2980-2985. https://doi.org/10.1016/j.ijhydene.2008.03.056
  18. Kivaisi, A. K., H. J. Gijzen, H. J. M. Op den Camp, and G. D. Vogels. 1992. Conversion of cereal residues into biogas in a rumen-derived process. World J. Microbiol. Biotechnol. 8: 428-433. https://doi.org/10.1007/BF01198760
  19. Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29: 685-695. https://doi.org/10.1007/s10529-006-9299-9
  20. Li, C. and H. H. P. Fang. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37: 1-39. https://doi.org/10.1080/10643380600729071
  21. Lloyd, D., K. Hillman, N. Yarlett, and A. G. Williams. 1989. Hydrogen production by rumen holotrich protozoa: Effects of oxygen and implications for metabolic control by in situ conditions. J. Protozool. 36: 205-213.
  22. Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, Hoboken, New Jersey.
  23. Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192 https://doi.org/10.1021/es0605016
  24. Lopes Pinto, F. A., O. Troshina, and P. Lindblad. 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy 27: 1209-1215. https://doi.org/10.1016/S0360-3199(02)00089-7
  25. Lovley, D. R. and K. P. Nevin. 2008. Electricity production with electricigens, pp. 295-306. In J. D. Wall, C. S. Harwood, and A. Demain (eds.). Bioenergy. ASM Press.
  26. Mandal, B., K. Nath, and D. Das. 2006. Improvement of biohydrogen production under decreased partial pressure of $H_2$ by Enterobacter cloacae. Biotechnol. Lett. 28: 831-835. https://doi.org/10.1007/s10529-006-9008-8
  27. Michalowski, T. 1997. Digestion and fermentation of microcrystalline cellulose by the rumen ciliate protozoon Eudiplodinium maggii. Acta Protozool. 36: 181-185.
  28. Michalowski, T. 1978. A simple system for continuous culture of rumen ciliates. Bull. Pol. Acad. Sci. Ser. Sci. Biol. 27: 581-583.
  29. Michalowski, T. 1975. Effect of different diets on the diurnal concentration of ciliate protozoa in the rumen of water buffalo. J. Agric. Sci. 85: 145-150. https://doi.org/10.1017/S002185960005351X
  30. Michalowski, T., G. Be ecki, E. Kwiatkowska, and J. J. Paj k. 2003. The effect of selected rumen fauna on fibrolytic enzymes activities, bacterial mass, fibre disappearance and fermentation pattern in sheep. J. Anim. Feed Sci. 12: 45-64.
  31. Michalowski, T., K. Rybicka, K. Wereszka, and A. Kasperowicz. 2001. Ability of the rumen ciliate Epidinium ecaudatum to digest and use crystalline cellulose and xylan for in vitro growth. Acta Protozool. 40: 203-210.
  32. Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi, pp. 129-151. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
  33. Prins, R. A. and W. Van Hoven. 1977. Carbohydrate fermentation by the rumen ciliate Isotricha prostoma. Protistologica 13: 549-556.
  34. Rismani-Yazdi, H., A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu, and O. H. Tuovinen. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407. https://doi.org/10.1002/bit.21366
  35. Santa Rosa, D. T., D. G. Pinto, V. S. Silva, R. A. Silva, and C. M. Rangel. 2007. High performance PEMFC stack with opencathode at ambient pressure and temperature conditions. Int. J. Hydrogen Energy 32: 4350-4357. https://doi.org/10.1016/j.ijhydene.2007.05.042
  36. Shin, J. W., J. H. Yoon, S. H. Lee, and T. H. Park. 2010. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply for fuel cell. Bioresource Technol. 101 (Suppl 1): S53-S58.
  37. Springer, T. E., T. Rockward, T. A. Zawodzinski, and S. Gottesfeld. 2001. Model for polymer electrolyte fuel cell operation on reformate feed: Effects of CO, $H_2$ dilution, and high fuel utilization. J. Electrochem. Soc. 148: A11-A23. https://doi.org/10.1149/1.1344516
  38. Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria, pp. 10-72. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
  39. Suzuki, S. and I. Karube. 1983. Energy production with immobilized cells, pp. 281-310. In Wingard, L. B. (ed.). Applied Biochemistry and Bioengineering. Academic Press.
  40. Suzuki, S., I. Karube, T. Matsunaga, S. Kuriyama, N. Suzuki, T. Shirogami, and T. Takamura. 1980. Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. Biochimie 62: 353-358. https://doi.org/10.1016/S0300-9084(80)80165-9
  41. Van Hoven, W. and R. A. Prins. 1977. Carbohydrate metabolism by the rumen ciliate Dasytricha ruminanium. Protistologica 13: 599-606.
  42. Van Soest, P. J. 1983. Nutritional Ecology of the Ruminant. O&B Books, Inc., Corvallis.
  43. Wereszka, K. and T. Micha owski. 2009. The digestion and utilization of starch by the rumen protozoan Diploplastron affine. 6th International Symposium of Anaerobic Microbiology (ISAM 2009), Liblice Chateau, Czech Republic, p. 83.
  44. Williams, A. G. 1986. Rumen holotrich protozoa. Microbiol. Rev. 50: 25-49.
  45. Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa, pp. 73-139. In P. N. Hobson and C. S. Stewart (eds.). The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, Wheinheim, New York, Tokyo, Melbourne, Madras.
  46. Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest.
  47. Wilson, M. S. and S. Gottesfeld. 1992. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J. Electrochem. Soc. 139: L28-L30. https://doi.org/10.1149/1.2069277
  48. Ziolecki, A. and E. Kwiatkowska. 1973. Gas chromatography of C1 to C% fatty acids in the rumen fluid and fermentation media. J. Chromatogr. 80: 250-254. https://doi.org/10.1016/S0021-9673(01)85338-3