참고문헌
- Barras, F., F. van Gijsegem, and A. K. Chatterjee. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201-234. https://doi.org/10.1146/annurev.py.32.090194.001221
- D'Amico, S., J. C. Marx, C. Gerday, and G. Feller. 2003. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896. https://doi.org/10.1074/jbc.M212508200
-
Declerck, N., M. Machius, P. Joyet, G. Wiegand, R. Huber, and C. Gaillardin. 2003. Hyperthermostabilization of Bacillus licheniformis amylase and modulation of its stability over a
$50^{\circ}C$ temperature range. Protein Eng. 16: 287-293. https://doi.org/10.1093/proeng/gzg032 - Eyring, H. and A. E. Stearn. 1939. The application of the theory of absolute reaction rates to protein. Chem. Rev. 24: 253-270. https://doi.org/10.1021/cr60078a005
- Foster, R. L. 1980. Modification of enzyme activity, pp. 91-161. In P. J. Baron (ed.). The Nature of Enzymology. Croom Helm, London.
- Fraissinet-Tachet, L. and M. Fevre. 1996. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. Microbiol. 33: 49-53. https://doi.org/10.1007/s002849900073
- Francisco, J. G. M., C. A. O. Maria, and M. R. Angel. 1994. Further thermal characterization of an aspartate aminotransferase from a halophilic organism. Biochem. J. 298: 465-470.
- Georis, J., F. L. Esteves, J. L. Brasseur, V. Bougnet, B. Devreese, F. Giannotta, B. Granier, and J. M. Frere. 2000. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Sci. 9: 466-475.
- Gohel, V. and D. C. Naseby. 2007. Thermal stabilization of chitinolytic enzymes of Pantoea dispersa. Biochem. Eng. J. 16: 57-67.
- Gomathi, V. and S. S. Gnanamanickam. 2004. Polygalacturonase-inhibiting proteins in plant defence. Curr. Sci. 87: 1211-1217.
- Gummadi, S. N. and T. Panda. 2003. Purification and biochemical properties of microbial pectinases - a review. Process Biochem. 38: 987-996. https://doi.org/10.1016/S0032-9592(02)00203-0
- Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
- Jayani, R. S., S. Saxena, and R. Gupta. 2005. Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026
- Johncon, J., M. Miura, and S. Tsuyumu. 1994. Cloning of a region encoding multiple polygalacturonase of Erwinia carotovora subsp. carotovora EC1. Ann. Phytopath. Soc. Japan 60: 202-207. https://doi.org/10.3186/jjphytopath.60.202
- Kapat, A. and T. Panda. 1997. pH and thermal stability studies of chitinase from Trichoderma harzianum: A thermodynamic consideration. Bioprocess Biosyst. Eng. 16: 269-272. https://doi.org/10.1007/s004490050321
- Kashyap, D. R., P. K. Vohra, S. R. Chopra, and R. Tewari. 2001. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 77: 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Manjon, A., J. L. Iborra, C. Romero, and M. Canovas. 1992. Properties of pectinesterase and endo-D-polygalacturonase coimmobilized in a porous glass support. Appl. Biochem. Biotechnol. 37: 19-31. https://doi.org/10.1007/BF02788854
- Massa, C., G. Degrassi, G. Devescovi, V. Venturi, and D. Lamba. 2007. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Express. Purif. 54: 300-308. https://doi.org/10.1016/j.pep.2007.03.019
- McKeon, T. A. 1988. Activity stain for polygalacturonase. J. Chromatogr. 455: 376-381. https://doi.org/10.1016/S0021-9673(01)82142-7
- Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determining reducing sugars. Anal. Chem. 31: 426-429. https://doi.org/10.1021/ac60147a030
- Muhammad, R., P. Raheela, R. J. Muhammad, N. Habibullah, and H. R. Muhammad. 2007. Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41: 558-564. https://doi.org/10.1016/j.enzmictec.2007.05.010
- Naidu, G. S. N. and T. Panda. 2003. Studies on pH and thermal deactivation of pectolytic enzymes from Aspergillus niger. Biochem. Eng. J. 16: 57-67. https://doi.org/10.1016/S1369-703X(03)00022-6
- Nasuno, S. and M. P. Starr. 1966. Polygalacturonase of Erwinia carotovora. J. Biol. Chem. 241: 5298-5306.
- Ortega, N., S. de Diego, M. Perez-Mateos, and M. D. Busto. 2004. Kinetic properties and thermal behavior of polygalacturonase used in fruit juice clarification. Food Chem. 88: 209-217. https://doi.org/10.1016/j.foodchem.2004.01.035
- Palomares, L. and G. Préstamo. 2005. Detection of peroxidase activity in two-dimensional gel electrophoresis. Eur. Food Res. Technol. 220: 644-647. https://doi.org/10.1007/s00217-005-1132-5
- Richardson, T. and D. B. Hyslop. 1985. Enzymes, pp. 408-411. In O. R. Fennema (ed.). Food Chemistry. Marcel Dekker Inc., New York.
- Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbour Laboratory Press, New York.
- Seo, S. T., N. Furuya, C. K. Lim, Y. Takanami, and K. Tsuchiya. 2002. Phenotypic and genetic diversity of Erwinia carotovora ssp. carotovora strains from Asia. J. Phytopathol. 150: 120-127. https://doi.org/10.1046/j.1439-0434.2002.00722.x
- Shau-ping, L., L. Hun-chi, L. Hefèrnan, and G. Wilcox. 1985. Evidence that polygalacturonase is a virulence determinant in Erwinia carotovora. J. Bacteriol. 164: 831-835.
- Siddiqui, K. S., M. J. Azhar, M. H. Rashid, and M. I. Rajoka. 1996. Activity and thermostability of carboxymethylcellulase from Aspergillus niger is strongly influenced by non-covalently attached polysaccharides. World J. Microbiol. Biotechnol. 12: 213-216. https://doi.org/10.1007/BF00360917
- Srinivas, R. and T. Panda. 1999. Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies. Bioprocess Eng. 21: 363-369. https://doi.org/10.1007/s004490050688
- Tari, C., N. Dogan, and N. Gogus. 2008. Biochemical and thermal characterization of crude exo-polygalacturonase produced by Aspergillus sojae. Food Chem. 111: 824-829. https://doi.org/10.1016/j.foodchem.2008.04.056
-
Violet, M. and J. C. Meunier. 1989. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis
$\alpha$ -amylase. Biochem. J. 263: 665-670.
피인용 문헌
- Characterization and differentiation of soft rot causing Pectobacterium carotovorum of Indian origin vol.136, pp.1, 2010, https://doi.org/10.1007/s10658-012-0140-0
- Characterization, Kinetic, and Thermodynamic Studies of Marine Pectinase FromBacillus subtilis vol.45, pp.3, 2010, https://doi.org/10.1080/10826068.2014.907181
- Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N -Acylhomoserine Lactone-Acylase vol.10, pp.9, 2010, https://doi.org/10.1371/journal.pone.0138034
- Kinetic studies on exploring lactose hydrolysis potential of β galactosidase extracted from Lactobacillus plantarum HF571129 vol.52, pp.10, 2010, https://doi.org/10.1007/s13197-015-1729-z
- Improvement of Thermal Stability of C‐Phycocyanin by Nanofiber and Preservative Agents vol.40, pp.6, 2016, https://doi.org/10.1111/jfpp.12711
- Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/8653583
- Characterization of an Exopolygalacturonase from <i>Leucoagaricus gongylophorus</i>, the Symbiotic Fungus of <i>Atta sexdens</i> vol.4, pp.1, 2010, https://doi.org/10.4236/aer.2016.41002
- Molecular and biochemical characterization of recombinant cel12B, cel8C, and peh28 overexpressed in Escherichia coli and their potential in biofuel production vol.10, pp.None, 2010, https://doi.org/10.1186/s13068-017-0732-1
- Purification, biochemical, and thermal properties of fibrinolytic enzyme secreted by Bacillus cereus SRM-001 vol.48, pp.1, 2010, https://doi.org/10.1080/10826068.2017.1387560
- Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharificatio vol.124, pp.5, 2018, https://doi.org/10.1111/jam.13718
- An Arabidopsis berberine bridge enzyme‐like protein specifically oxidizes cellulose oligomers and plays a role in immunity vol.98, pp.3, 2019, https://doi.org/10.1111/tpj.14237
- PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study vol.7, pp.28, 2010, https://doi.org/10.1039/c9tb00590k
- Stability and Thermodynamic Attributes of Starch Hydrolyzing α‐Amylase of Anoxybacillus rupiensis TS‐4 vol.72, pp.1, 2010, https://doi.org/10.1002/star.201900105
- From Secretion in Pichia pastoris to Application in Apple Juice Processing: Exo-Polygalacturonase from Sporothrix schenckii 1099-18 vol.28, pp.None, 2010, https://doi.org/10.2174/1871530321666210106110400