참고문헌
- Albertsson, A. C., C. Barenstedt, and S. Karlsson. 1994. Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym. 45: 97-103. https://doi.org/10.1002/actp.1994.010450207
- Bikiaris, D., J. Aburto, I. Alric, E. Borredon, M. Botev, and C. Betchev. 1999. Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. J. Appl. Polym. Sci. 71: 1089-1100. https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1089::AID-APP7>3.0.CO;2-I
- Flores, M., N. Colón, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mat. Res. Soc. Symp. Proc. Vol. 820. Materials Research Society.
- Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172. https://doi.org/10.1016/j.ibiod.2007.07.001
- Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
- Kapri, A., M. G. H. Zaidi, A. Satlewal, and R. Goel. 2010. SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeter. Biodegrad. 64: 238-244. https://doi.org/10.1016/j.ibiod.2010.02.002
- Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474.
- Keskinen, H., J. M. Makela, M. Aromaa, J. Keskinen, S. Areva, C. V. Teixeira, et al. 2006. Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. Catal. Lett. 111: 3-4.
- Kwpp, L. R. and W. J. Jewell. 1992. Biodegradability of modified plastic films in controlled biological environments. Environ. Technol. 26: 193-198. https://doi.org/10.1021/es00025a024
- Ling, Y. H., J. J. Qi, X. F. Zou, X. M. Zhao, X. D. Bai, and Q. L. Feng. 2005. Antibacterial material, hydrothermal synthesis, ion-exchange, titanate nanotube. Key Eng. Mater. 280-283: 707-712. https://doi.org/10.4028/www.scientific.net/KEM.280-283.707
- Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms 10th Ed., pp. 145-147; 227-228 Pearson Education, Inc NJ.
-
Matsunaga, T. and M. Okochi. 1995.
$TiO_2$ -mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol. 29: 501. https://doi.org/10.1021/es00002a028 - Neal, A. L. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371. https://doi.org/10.1007/s10646-008-0217-x
- Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558. https://doi.org/10.1016/j.ibiod.2009.03.001
- Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Metal Based Drugs 1: 511. https://doi.org/10.1155/MBD.1994.511
-
Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron
$(Cleantop{\circledR})$ material. Biomaterials 15: 753-758. https://doi.org/10.1016/0142-9612(94)90028-0 - Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55. https://doi.org/10.1016/S0964-8305(00)00048-2
- Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. Mat. Res. Soc. Symp. Proc. Vol. 737. Materials Research Society.
- Rana, S. and R. D. K. Misra. 2005. The anti-microbial activity of titania-nickel ferrite composite nanoparticles. J. Miner. Met. Mater. Soc. 57: 65-69. https://doi.org/10.1007/s11837-005-0186-y
- Sah, A., A. Kapri, M. G. H. Zaidi, H. Negi, and R. Goel. 2010. Implications of fullerene-60 upon in-vitro LDPE biodegradation. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10025
- Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.
- Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239. https://doi.org/10.1007/s10924-009-0143-x
- Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany.
- Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3. https://doi.org/10.1186/1477-3155-4-3
- Zaidi, M. G. H., P. L. Sah, S. Alam, and A. K. Rai. 2009. Synthesis of epoxy-ferrite nanocomposites in supercritical carbon dioxide. J. Exp. Nanosci. 4:55-66. https://doi.org/10.1080/17458080802656515
피인용 문헌
- Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach vol.3, pp.1, 2010, https://doi.org/10.1186/2193-1801-3-497
- Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride vol.253, pp.4, 2016, https://doi.org/10.1007/s00709-015-0855-9
- Selection of poly(R)-3-hydroxybutyric acid utilising bacteria by enrichment, optimisation and compatibility testing for consortia development vol.32, pp.6, 2016, https://doi.org/10.1080/02757540.2016.1162297
- Barium titanate nanoparticles: promising multitasking vectors in nanomedicine vol.27, pp.23, 2016, https://doi.org/10.1088/0957-4484/27/23/232001
- Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of Bacillus, Pseudomonas, and their synergistic effect on Vigna mungo growth vol.2, pp.6, 2010, https://doi.org/10.1007/s40974-017-0068-5
- Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya vol.13, pp.7, 2010, https://doi.org/10.1371/journal.pone.0198446
- Studying the effect of biosilver nanoparticles on polyethylene degradation vol.9, pp.4, 2010, https://doi.org/10.1007/s13204-018-0922-6
- Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst vol.30, pp.3, 2021, https://doi.org/10.5757/asct.2021.30.3.87