DOI QR코드

DOI QR Code

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film

  • Kapri, Anil (Department of Microbiology, G. B. Pant University of Agriculture and Technology) ;
  • Zaidi, M.G.H. (Department of Chemistry, G. B. Pant University of Agriculture and Technology) ;
  • Goel, Reeta (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
  • Received : 2009.12.17
  • Accepted : 2010.03.15
  • Published : 2010.06.28

Abstract

The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/$CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

Keywords

References

  1. Albertsson, A. C., C. Barenstedt, and S. Karlsson. 1994. Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym. 45: 97-103. https://doi.org/10.1002/actp.1994.010450207
  2. Bikiaris, D., J. Aburto, I. Alric, E. Borredon, M. Botev, and C. Betchev. 1999. Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. J. Appl. Polym. Sci. 71: 1089-1100. https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1089::AID-APP7>3.0.CO;2-I
  3. Flores, M., N. Colón, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. Mat. Res. Soc. Symp. Proc. Vol. 820. Materials Research Society.
  4. Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172. https://doi.org/10.1016/j.ibiod.2007.07.001
  5. Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
  6. Kapri, A., M. G. H. Zaidi, A. Satlewal, and R. Goel. 2010. SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int. Biodeter. Biodegrad. 64: 238-244. https://doi.org/10.1016/j.ibiod.2010.02.002
  7. Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474.
  8. Keskinen, H., J. M. Makela, M. Aromaa, J. Keskinen, S. Areva, C. V. Teixeira, et al. 2006. Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. Catal. Lett. 111: 3-4.
  9. Kwpp, L. R. and W. J. Jewell. 1992. Biodegradability of modified plastic films in controlled biological environments. Environ. Technol. 26: 193-198. https://doi.org/10.1021/es00025a024
  10. Ling, Y. H., J. J. Qi, X. F. Zou, X. M. Zhao, X. D. Bai, and Q. L. Feng. 2005. Antibacterial material, hydrothermal synthesis, ion-exchange, titanate nanotube. Key Eng. Mater. 280-283: 707-712. https://doi.org/10.4028/www.scientific.net/KEM.280-283.707
  11. Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms 10th Ed., pp. 145-147; 227-228 Pearson Education, Inc NJ.
  12. Matsunaga, T. and M. Okochi. 1995. $TiO_2$-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol. 29: 501. https://doi.org/10.1021/es00002a028
  13. Neal, A. L. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371. https://doi.org/10.1007/s10646-008-0217-x
  14. Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558. https://doi.org/10.1016/j.ibiod.2009.03.001
  15. Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Metal Based Drugs 1: 511. https://doi.org/10.1155/MBD.1994.511
  16. Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron$(Cleantop{\circledR})$ material. Biomaterials 15: 753-758. https://doi.org/10.1016/0142-9612(94)90028-0
  17. Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55. https://doi.org/10.1016/S0964-8305(00)00048-2
  18. Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. Mat. Res. Soc. Symp. Proc. Vol. 737. Materials Research Society.
  19. Rana, S. and R. D. K. Misra. 2005. The anti-microbial activity of titania-nickel ferrite composite nanoparticles. J. Miner. Met. Mater. Soc. 57: 65-69. https://doi.org/10.1007/s11837-005-0186-y
  20. Sah, A., A. Kapri, M. G. H. Zaidi, H. Negi, and R. Goel. 2010. Implications of fullerene-60 upon in-vitro LDPE biodegradation. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10025
  21. Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.
  22. Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239. https://doi.org/10.1007/s10924-009-0143-x
  23. Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany.
  24. Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3. https://doi.org/10.1186/1477-3155-4-3
  25. Zaidi, M. G. H., P. L. Sah, S. Alam, and A. K. Rai. 2009. Synthesis of epoxy-ferrite nanocomposites in supercritical carbon dioxide. J. Exp. Nanosci. 4:55-66. https://doi.org/10.1080/17458080802656515

Cited by

  1. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach vol.3, pp.1, 2010, https://doi.org/10.1186/2193-1801-3-497
  2. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride vol.253, pp.4, 2016, https://doi.org/10.1007/s00709-015-0855-9
  3. Selection of poly(R)-3-hydroxybutyric acid utilising bacteria by enrichment, optimisation and compatibility testing for consortia development vol.32, pp.6, 2016, https://doi.org/10.1080/02757540.2016.1162297
  4. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine vol.27, pp.23, 2016, https://doi.org/10.1088/0957-4484/27/23/232001
  5. Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of Bacillus, Pseudomonas, and their synergistic effect on Vigna mungo growth vol.2, pp.6, 2010, https://doi.org/10.1007/s40974-017-0068-5
  6. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya vol.13, pp.7, 2010, https://doi.org/10.1371/journal.pone.0198446
  7. Studying the effect of biosilver nanoparticles on polyethylene degradation vol.9, pp.4, 2010, https://doi.org/10.1007/s13204-018-0922-6
  8. Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst vol.30, pp.3, 2021, https://doi.org/10.5757/asct.2021.30.3.87