DOI QR코드

DOI QR Code

Expression of Yeast Cyclophilin A (Cpr1) Provides Improved Stress Tolerance in Escherichia coli

  • Received : 2009.11.05
  • Accepted : 2010.02.22
  • Published : 2010.06.28

Abstract

Cyclophilins contain the conserved activity of cis-trans peptidyl-prolyl isomerase, which is implicated in protein folding, and function as molecular chaperones. When the yeast cyclophilin A gene (cpr1) was subcloned into the prokaryotic expression vector pKM260, it was found that the expression of Cpr1 drastically increased the cell viability of E. coli BL21 when under abiotic stress conditions, as in the presence of cadmium, copper, hydrogen peroxide, heat, and SDS. Therefore, this study illustrates the importance of Cpr1 as a molecular chaperone that can improve the cellular stress responses when E. coli cells are exposed to adverse conditions, while also demonstrating its potential to increase the stability of E. coli strains utilized for the production of recombinant proteins.

Keywords

References

  1. Adamis, P. D., D. S. Gomes, M. D. Pereira, J. Freire de Mesquita, M. L. Pinto, A. D. Panek, and E. C. Eleutherio. 2004. The effect of superoxide dismutase deficiency on cadmium stress. J. Biochem. Mol. Toxicol. 18: 12-17. https://doi.org/10.1002/jbt.20000
  2. Arevalo-Rodriguez, M., M. E. Cardenas, X. Wu, S. D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 19: 3739-3749. https://doi.org/10.1093/emboj/19.14.3739
  3. Arevalo-Rodriguez, M., X. Wu, S. D. Hanes, and J. Heitman. 2004. Prolyl isomerases in yeast. Front. Biosci. 9: 2420-2446. https://doi.org/10.2741/1405
  4. Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryot. Cell 4: 17-29. https://doi.org/10.1128/EC.4.1.17-29.2005
  5. Berger, R., F. Schauwecker, and U. Keller. 1999. Transcriptional analysis of the cyclophilin A gene (cypA) of Streptomyces chrysomallus. FEMS Microbiol. Lett. 178: 39-45. https://doi.org/10.1111/j.1574-6968.1999.tb13757.x
  6. Cabiscol, E., E. Piulats, P. Echave, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393-27398.
  7. Chen, A. P., G. L.Wang, Z. L. Qu, C. X. Lu, N. Liu, F. Wang, and G. X. Xia. 2007. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep. 26: 237-245. https://doi.org/10.1007/s00299-006-0238-y
  8. Coaker, G., A. Falick, and B. Staskawicz. 2005. Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308: 548-550. https://doi.org/10.1126/science.1108633
  9. Costa, V., A. Quintanilha, and P. Moradas-Ferreira. 2007. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59: 293-298. https://doi.org/10.1080/15216540701225958
  10. Costa, V. M., M. A. Amorim, A. Quintanilha, and P. Moradas-Ferreira. 2002. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: The involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic. Biol. Med. 33: 1507-1515. https://doi.org/10.1016/S0891-5849(02)01086-9
  11. Dolinski, K., S. Muir, M. Cardenas, and J. Heitman. 1997. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 94: 13093-13098. https://doi.org/10.1073/pnas.94.24.13093
  12. Galat, A. 2004. Function-dependent clustering of orthologues and paralogues of cyclophilins. Proteins 56: 808-820. https://doi.org/10.1002/prot.20156
  13. Kim, I. S., H. S. Yun, I. S. Park, H. Y. Sohn, H. Iwahashi, and I. N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102: 288-296. https://doi.org/10.1263/jbb.102.288
  14. Massignan, T., F. Casoni, M. Basso, P. Stefanazzi, E. Biasini, M. Tortarolo, et al. 2007. Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. Biochem. Biophys. Res. Commun. 353: 719-725. https://doi.org/10.1016/j.bbrc.2006.12.075
  15. Tummala, H., C. Jung, A. Tiwari, C. M. Higgins, L. J. Hayward, and Z. Xu. 2005. Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis. J. Biol. Chem. 280: 17725-17731. https://doi.org/10.1074/jbc.M501705200
  16. Wang, P., M. E. Cardenas, G. M. Cox, J. R. Perfect, and J. Heitman. 2001. Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep. 2: 511-518. https://doi.org/10.1093/embo-reports/kve109
  17. Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6: 226. https://doi.org/10.1186/gb-2005-6-7-226
  18. Wong, D. K., B. Y. Lee, M. A. Horwitz, and B. W. Gibson. 1999. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect. Immun. 67: 327-336.

Cited by

  1. Genome wide analysis ofCyclophilingene family from rice and Arabidopsis and its comparison with yeast vol.7, pp.12, 2012, https://doi.org/10.4161/psb.22306
  2. Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0157070
  3. Microbial cyclophilins: specialized functions in virulence and beyond vol.33, pp.9, 2010, https://doi.org/10.1007/s11274-017-2330-6
  4. A Novel Cyclophilin B Gene in the Red Tide Dinoflagellate Cochlodinium polykrikoides : Molecular Characterizations and Transcriptional Responses to Environmental Stresses vol.2017, pp.None, 2010, https://doi.org/10.1155/2017/4101580