DOI QR코드

DOI QR Code

Comparative Proteomic Analysis of Human Amniotic Fluid Supernatants with Down Syndrome Using Mass Spectrometry

  • Park, Ji-Sook (Department of Molecular Biotechnology and Institute of Biomedical Science and Technology, Konkuk University) ;
  • Cha, Dong-Hyun (Department of Obstetrics and Gynecology, Kangnam CHA Hospital, Pochon CHA University, College of Medicine) ;
  • Jung, Jin-Woo (Department of Molecular Biotechnology and Institute of Biomedical Science and Technology, Konkuk University) ;
  • Kim, Young-Hwan (Mass Spectrometry Research Center, Korea Basic Science Institute) ;
  • Lee, Sook-Hwan (Department of Obstetrics and Gynecology, Kangnam CHA Hospital, Pochon CHA University, College of Medicine) ;
  • Kim, Young-Jun (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Kwang-Pyo (Department of Molecular Biotechnology and Institute of Biomedical Science and Technology, Konkuk University)
  • 투고 : 2009.12.28
  • 심사 : 2010.02.15
  • 발행 : 2010.06.28

초록

Down syndrome (DS) is an abnormality of the 21st chromosome that commonly occurs in children born to older women. Thus, amniotic fluid (AF) is usually collected from such women for prenatal diagnosis. This study analyzed human AF supernatants (AFS) using a mass spectrometric (MS) approach to search for candidate biomarkers of a DS pregnancy. The AFS were collected from older pregnant women at weeks 16-18 of their gestation by amniocentesis for cytogenetic analysis. The AFS from the pregnancies carrying DS (n=4) or chromosomally normal (n=6) fetuses, as revealed by the cytogenetic analysis, were then subjected to global protein profiling based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Affinity chromatography was also applied prior to the LC-ESI-MS/MS to minimize the masking effect of highly abundant albumin and immunoglobulin and thereby increase the diversity of the identified proteins. As a result, at least 30 new AFS proteins were identified and 44 AFS proteins were found to be differentially expressed between the DS and normal cases, where 6 of the proteins were unique to the DS cases and 11 were unique to the chromosomally normal cases. In addition, in the DS cases, 19 AFS proteins were downregulated and 8 were upregulated to varying degrees. A Western blot analysis confirmed the LC-ESI-MS/MS data, indicating that the combined detection of apolipoprotein A-II (apoA-II) and alpha-fetoprotein (AFP) could be a potential tool for diagnosing DS cases.

키워드

참고문헌

  1. Aebersold, R. and M. Mann. 2003. Mass spectrometry-based proteomics. Nature 422: 198-207. https://doi.org/10.1038/nature01511
  2. Ahn, Y. H., E. S. Ji, J. Y. Lee, K. Cho, and J. S. Yoo. 2007. Coupling of TiO(2)-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 21: 3987-3994. https://doi.org/10.1002/rcm.3278
  3. Antonarakis, S. E., R. Lyle, E. T. Dermitzakis, A. Reymond, and S. Deutsch. 2004. Chromosome 21 and Down syndrome: From genomics to pathophysiology. Nat. Rev. Genet. 5: 725-738. https://doi.org/10.1038/nrg1448
  4. Benn, P. A., J. Ying, T. Beazoglou, and J. F. Egan. 2001. Estimates for the sensitivity and false-positive rates for second trimester serum screening for Down syndrome and trisomy 18 with adjustment for cross-identification and double-positive results. Prenat. Diagn. 21: 46-51. https://doi.org/10.1002/1097-0223(200101)21:1<46::AID-PD984>3.0.CO;2-C
  5. Bobrow, M., T. Barby, A. Hajianpour, D. Maxwell, and S. C. Yau. 1992. Fertility in a male with trisomy 21. J. Med. Genet. 29: 141.
  6. Buhimschi, C. S., V. Bhandari, B. D. Hamar, M. O. Bahtiyar, G. Zhao, A. K. Sfakianaki, et al. 2007. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med. 4: e18. https://doi.org/10.1371/journal.pmed.0040018
  7. Buhimschi, I. A., E. Zambrano, C. M. Pettker, M. O. Bahtiyar, M. Paidas, V. A. Rosenberg, S. Thung, C. M. Salafia, and C. S. Buhimschi. 2008. Using proteomic analysis of the human amniotic fluid to identify histologic chorioamnionitis. Obstet. Gynecol. 111: 403-412. https://doi.org/10.1097/AOG.0b013e31816102aa
  8. Christiansen, M., I. Jaliashvili, M. T. Overgaard, C. Ensinger, P. Obrist, and C. Oxvig. 2000. Quantification and characterization of pregnancy-associated complexes of angiotensinogen and the proform of eosinophil major basic protein in serum and amniotic fluid. Clin. Chem. 46: 1099-1105.
  9. Fountoulakis, M. 2001. Proteomics: Current technologies and applications in neurological disorders and toxicology. Amino Acids 21: 363-381. https://doi.org/10.1007/s007260170002
  10. Freidl, M., T. Gulesserian, G. Lubec, M. Fountoulakis, and B. Lubec. 2001. Deterioration of the transcriptional, splicing and elongation machinery in brain of fetal Down syndrome. J. Neural Transm. Suppl. 61: 47-57.
  11. Friberg, H. and T. Wieloch. 2002. Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84: 241-250. https://doi.org/10.1016/S0300-9084(02)01381-0
  12. Gupta, M. K., J. M. Jang, J. W. Jung, S. J. Uhm, K. P. Kim, and H. T. Lee. 2009. Proteomic analysis of parthenogenetic and in vitro fertilized porcine embryos. Proteomics 9: 2846-2860. https://doi.org/10.1002/pmic.200800700
  13. Hassan, M. I., V. Kumar, T. P. Singh, and S. Yadav. 2008. Proteomic analysis of human amniotic fluid from Rh(-) pregnancy. Prenat. Diagn. 28: 102-108. https://doi.org/10.1002/pd.1941
  14. Hassell, J. R., J. H. Kimura, and V. C. Hascall. 1986. Proteoglycan core protein families. Annu. Rev. Biochem. 55: 539-567. https://doi.org/10.1146/annurev.bi.55.070186.002543
  15. Hook, E. B. and A. Lindsjo. 1978. Down syndrome in live births by single year maternal age interval in a Swedish study: Comparison with results from a New York State study. Am. J. Hum. Genet. 30: 19-27.
  16. Hsiang, Y. H., G. D. Berkovitz, G. L. Bland, C. J. Migeon, and A. C. Warren. 1987. Gonadal function in patients with Down syndrome. Am. J. Med. Genet. 27: 449-458. https://doi.org/10.1002/ajmg.1320270223
  17. Huether, C. A., J. Ivanovich, B. S. Goodwin, E. L. Krivchenia, V. S. Hertzberg, L. D. Edmonds, D. S. May, and J. H. Priest. 1998. Maternal age specific risk rate estimates for Down syndrome among live births in whites and other races from Ohio and metropolitan Atlanta, 1970-1989. J. Med. Genet. 35: 482-490. https://doi.org/10.1136/jmg.35.6.482
  18. Kubota, T. and H. Takeuchi. 1998. Evaluation of insulin-like growth factor binding protein-1 as a diagnostic tool for rupture of the membranes. J. Obstet. Gynaecol. Res. 24: 411-417. https://doi.org/10.1111/j.1447-0756.1998.tb00116.x
  19. Langford, K., W. Blum, K. Nicolaides, J. Jones, A. McGregor, and J. Miell. 1994. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: A basis for programming by undernutrition? Eur. J. Clin. Invest. 24: 851-856. https://doi.org/10.1111/j.1365-2362.1994.tb02030.x
  20. Lee, S. J., K. H. Kim, J. S. Park, J. W. Jung, Y. H. Kim, S. K. Kim, et al. 2007. Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines. Biochem. Biophys. Res. Commun. 357: 620-626. https://doi.org/10.1016/j.bbrc.2007.03.191
  21. Liberatori, S., L. Bini, C. De Felice, B. Magi, B. Marzocchi, R. Raggiaschi, et al. 1997. A two-dimensional protein map of human amniotic fluid at 17 weeks' gestation. Electrophoresis 18: 2816-2822. https://doi.org/10.1002/elps.1150181517
  22. Lubec, G., K. Krapfenbauer, and M. Fountoulakis. 2003. Proteomics in brain research: Potentials and limitations. Prog. Neurobiol. 69: 193-211. https://doi.org/10.1016/S0301-0082(03)00036-4
  23. Mauk, M. R., F. I. Rosell, B. Lelj-Garolla, G. R. Moore, and A. G. Mauk. 2005. Metal ion binding to human hemopexin. Biochemistry 44: 1864-1871. https://doi.org/10.1021/bi0481747
  24. Mazurkiewicz, J. C., G. F. Watts, F. G. Warburton, B. M. Slavin, C. Lowy, and E. Koukkou. 1994. Serum lipids, lipoproteins and apolipoproteins in pregnant non-diabetic patients. J. Clin. Pathol. 47: 728-731. https://doi.org/10.1136/jcp.47.8.728
  25. Michaels, J. E., S. Dasari, L. Pereira, A. P. Reddy, J. A. Lapidus, X. Lu, et al. 2007. Comprehensive proteomic analysis of the human amniotic fluid proteome: Gestational age-dependent changes. J. Proteome Res. 6: 1277-1285. https://doi.org/10.1021/pr060543t
  26. Michel, P. E., D. Crettaz, P. Morier, M. Heller, D. Gallot, J. D. Tissot, F. Reymond, and J. S. Rossier. 2006. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelectric focusing followed by nano-LC-MS/MS. Electrophoresis 27: 1169-1181. https://doi.org/10.1002/elps.200500680
  27. Miell, J. P., K. S. Langford, J. S. Jones, P. Noble, M. Westwood, A. White, and K. H. Nicolaides. 1997. The maternal insulin-like growth factor (IGF) and IGF-binding protein response to trisomic pregnancy during the first trimester: A possible diagnostic tool for trisomy 18 pregnancies. J. Clin. Endocrinol. Metab. 82: 287-292. https://doi.org/10.1210/jc.82.1.287
  28. Nadesalingam, J., A. L. Bernal, A. W. Dodds, A. C. Willis, D. J. Mahoney, A. J. Day, K. B. Reid, and N. Palaniyar. 2003. Identification and characterization of a novel interaction between pulmonary surfactant protein D and decorin. J. Biol. Chem. 278: 25678-25687. https://doi.org/10.1074/jbc.M210186200
  29. Nilsson, S., M. Ramstrom, M. Palmblad, O. Axelsson, and J. Bergquist. 2004. Explorative study of the protein composition of amniotic fluid by liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res. 3: 884-889. https://doi.org/10.1021/pr0499545
  30. Overgaard, M. T., E. S. Sorensen, D. Stachowiak, H. B. Boldt, L. Kristensen, L. Sottrup-Jensen, and C. Oxvig. 2003. Complex of pregnancy-associated plasma protein-A and the proform of eosinophil major basic protein. Disulfide structure and carbohydrate attachment. J. Biol. Chem. 278: 2106-2117. https://doi.org/10.1074/jbc.M208777200
  31. Park, S. J., W. G. Yoon, J. S. Song, H. S. Jung, C. J. Kim, S. Y. Oh, et al. 2006. Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Proteomics 6: 349-363. https://doi.org/10.1002/pmic.200500084
  32. Pradhan, M., A. Dalal, F. Khan, and S. Agrawal. 2006. Fertility in men with Down syndrome: A case report. Fertil. Steril. 86: 1761-c1763.
  33. Pulkkinen, L., T. Alitalo, T. Krusius, and L. Peltonen. 1992. Expression of decorin in human tissues and cell lines and defined chromosomal assignment of the gene locus (DCN). Cytogenet. Cell Genet. 60: 107-111. https://doi.org/10.1159/000133314
  34. Qian, W. J., T. Liu, M. E. Monroe, E. F. Strittmatter, J. M. Jacobs, L. J. Kangas, K. Petritis, D. G. Camp 2nd, and R. D. Smith. 2005. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. J. Proteome Res. 4: 53-62. https://doi.org/10.1021/pr0498638
  35. Queloz, P. A., D. Crettaz, L. Thadikkaran, V. Sapin, D. Gallot, J. Jani, et al. 2007. Proteomic analyses of amniotic fluid: Potential applications in health and diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 850: 336-342. https://doi.org/10.1016/j.jchromb.2006.12.006
  36. Roizen, N. J. and D. Patterson. 2003. Down's syndrome. Lancet 361: 1281-1289. https://doi.org/10.1016/S0140-6736(03)12987-X
  37. Rutanen, E. M., H. Bohn, and M. Seppala. 1982. Radioimmunoassay of placental protein 12: Levels in amniotic fluid, cord blood, and serum of healthy adults, pregnant women, and patients with trophoblastic disease. Am. J. Obstet. Gynecol. 144: 460-463. https://doi.org/10.1016/0002-9378(82)90254-X
  38. Schonherr, E., M. Broszat, E. Brandan, P. Bruckner, and H. Kresse. 1998. Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch. Biochem. Biophys. 355: 241-248. https://doi.org/10.1006/abbi.1998.0720
  39. Sheridan, R., J. Llerena Jr., S. Matkins, P. Debenham, A. Cawood, and M. Bobrow. 1989. Fertility in a male with trisomy 21. J. Med. Genet. 26: 294-298. https://doi.org/10.1136/jmg.26.5.294
  40. Smith, A. and W. T. Morgan. 1981. Hemopexin-mediated transport of heme into isolated rat hepatocytes. J. Biol. Chem. 256: 10902-10909.
  41. Takahashi, N., Y. Takahashi, and F. W. Putnam. 1985. Complete amino acid sequence of human hemopexin, the heme-binding protein of serum. Proc. Natl. Acad. Sci. U.S.A. 82: 73-77. https://doi.org/10.1073/pnas.82.1.73
  42. Thadikkaran, L., D. Crettaz, M. A. Siegenthaler, D. Gallot, V. Sapin, R. V. Iozzo, P. A. Queloz, P. Schneider, and J. D. Tissot. 2005. The role of proteomics in the assessment of premature rupture of fetal membranes. Clin. Chim. Acta 360: 27-36. https://doi.org/10.1016/j.cccn.2005.04.018
  43. Tsangaris, G. T., A. Kolialexi, P. M. Karamessinis, A. K. Anagnostopoulos, A. Antsaklis, M. Fountoulakis, and A. Mavrou. 2006. The normal human amniotic fluid supernatant proteome. In Vivo 20: 479-490.
  44. Tsangaris, G. T., P. Karamessinis, A. Kolialexi, S. D. Garbis, A. Antsaklis, A. Mavrou, and M. Fountoulakis. 2006. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 6: 4410-4419. https://doi.org/10.1002/pmic.200600085
  45. Uhm, S. J., M. K. Gupta, J. H. Yang, S. H. Lee, and H. T. Lee. 2007. Selenium improves the developmental ability and reduces the apoptosis in porcine parthenotes. Mol. Reprod. Dev. 74: 1386-1394. https://doi.org/10.1002/mrd.20701
  46. Vascotto, C., A. M. Salzano, C. D'Ambrosio, A. Fruscalzo, D. Marchesoni, C. di Loreto, A. Scaloni, G. Tell, and F. Quadrifoglio. 2007. Oxidized transthyretin in amniotic fluid as an early marker of preeclampsia. J. Proteome Res. 6: 160-170. https://doi.org/10.1021/pr060315z
  47. Vuadens, F., C. Benay, D. Crettaz, D. Gallot, V. Sapin, P. Schneider, et al. 2003. Identification of biologic markers of the premature rupture of fetal membranes: Proteomic approach. Proteomics 3: 1521-1525. https://doi.org/10.1002/pmic.200300455
  48. Wald, N. J., H. S. Cuckle, J. W. Densem, K. Nanchahal, P. Royston, T. Chard, et al. 1988. Maternal serum screening for Down's syndrome in early pregnancy. Br. Med. J. 297: 883-887. https://doi.org/10.1136/bmj.297.6653.883
  49. Wang, H. S., L. A. Perry, J. Kanisius, R. K. Iles, J. M. Holly, and T. Chard. 1991. Purification and assay of insulin-like growth factor-binding protein-1: Measurement of circulating levels throughout pregnancy. J. Endocrinol. 128: 161-168. https://doi.org/10.1677/joe.0.1280161
  50. Xaus, J., M. Comalada, M. Cardo, A. F. Valledor, and A. Celada. 2001. Decorin inhibits macrophage colony-stimulating factor proliferation of macrophages and enhances cell survival through induction of p27(Kip1) and p21(Waf1). Blood 98: 2124-2133. https://doi.org/10.1182/blood.V98.7.2124
  51. Zolotarjova, N., J. Martosella, G. Nicol, J. Bailey, B. E. Boyes, and W. C. Barrett. 2005. Differences among techniques for high-abundant protein depletion. Proteomics 5: 3304-3313. https://doi.org/10.1002/pmic.200402021
  52. Zuhlke, C., U. Thies, I. Braulke, A. Reis, and C. Schirren. 1994. Down syndrome and male fertility: PCR-derived fingerprinting, serological and andrological investigations. Clin. Genet. 46: 324-326.

피인용 문헌

  1. Application of proteomics for the identification of biomarkers in amniotic fluid: are we ready to provide a reliable prediction? vol.2, pp.2, 2010, https://doi.org/10.1007/s13167-011-0083-0
  2. 2D DIGE analysis of maternal plasma for potential biomarkers of Down Syndrome vol.9, pp.None, 2010, https://doi.org/10.1186/1477-5956-9-56
  3. Oxidative stress occurs early in Down syndrome pregnancy: A redox proteomics analysis of amniotic fluid vol.5, pp.3, 2010, https://doi.org/10.1002/prca.201000121
  4. Proteomic analysis of amniotic fluid for the diagnosis of fetal aneuploidies vol.8, pp.2, 2011, https://doi.org/10.1586/epr.10.112
  5. Bioinformatics approaches in the discovery and understanding of reproduction-related biomarkers vol.8, pp.2, 2010, https://doi.org/10.1586/epr.11.12
  6. Proteomic techniques for finding biomarkers for prenatal screening for Down syndrome: where are we? vol.9, pp.6, 2012, https://doi.org/10.1586/epr.12.59
  7. Apolipoprotein A-I: Insights from redox proteomics for its role in neurodegeneration vol.7, pp.1, 2010, https://doi.org/10.1002/prca.201200087
  8. Unraveling the complexity of neurodegeneration in brains of subjects with Down syndrome: Insights from proteomics vol.8, pp.1, 2010, https://doi.org/10.1002/prca.201300066
  9. Human coelomic fluid investigation: A MS-based analytical approach to prenatal screening vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-29384-9
  10. Advances in the proteomics of amniotic fluid to detect biomarkers for chromosomal abnormalities and fetomaternal complications during pregnancy vol.16, pp.4, 2010, https://doi.org/10.1080/14789450.2019.1578213
  11. IgGFc-binding protein in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-85473-2