References
- Baya, A. M., P. R. Brayton, N. L. Brown, D. J. Ganmes, E. Russels, and R. K. Colwell. 1986. Coincident plasmid and antimicrobial resistance in marine bacterial isolates from polluted and unpolluted Atlantic Ocean samples. Appl. Environ. Microbiol. 5: 1285-1292.
- Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
- Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher. 1999. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana plants confers resistance to organomercurials. Proc. Natl. Acad. Sci. U.S.A. 96: 6808-6813. https://doi.org/10.1073/pnas.96.12.6808
- Brown, N. L., T. Misra, J. N. Winnie, A. Schmidt, M. Seiff, and S. Seiff. 1986. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: Further evidence for mer genes, which enhance the activity of the mercuric ion detoxification system. Mol. Gen. Genet. 202: 143-151. https://doi.org/10.1007/BF00330531
- Carty, A. J. and S. F. Malone. 1979. The chemistry of mercury in biological systems, pp. 433-479. In J. O. Nriagu (ed.). The Bioqeochemistry of Mercury in the Elsevier Biomedical, Amsterdam.
- Che, D., R. B. Meagher, A. C. Heaton, A. Lima, C. L. Rugh, and S. A. Merkle. 2003. Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol. J. 1: 311-319. https://doi.org/10.1046/j.1467-7652.2003.00031.x
- Edwards, K., C. Johnstone, and C. Thompson. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. https://doi.org/10.1093/nar/19.6.1349
- Griffin, H. G., T. J. Foster, S. Silver, and T. K. Mishra. 1987. Cloning and DNA sequence of mercuric reductase and organomercurial resistance determinants of plasmids pDU1358. Proc. Natl. Acad. Sci. U.S.A. 84: 3112-3116. https://doi.org/10.1073/pnas.84.10.3112
- Gupta, N. and A. Ali. 2004. Mercury volatilization by R factors systems in Escherichia coli isolated from aquatic environments of India. Curr. Microbiol. 48: 88-96. https://doi.org/10.1007/s00284-003-4054-0
- Hanahan, D. 1983. Studies on transformation of E. coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Heaton, A. C. P., C. L. Rugh, T. Kim, N. J. Wang, and R. B. Meagher. 2003. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 22: 2940-2947. https://doi.org/10.1897/02-442
- He, Y. K., J. G. Sun, Z. X. Feng, M. Czako, and L. Marton. 2001. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 11: 231-236. https://doi.org/10.1038/sj.cr.7290091
- Holsters, M., D. De-Waele, A. Depicker, E. Messens, M. M. Van, and J. Schell. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163: 181-187. https://doi.org/10.1007/BF00267408
- Hussein, S. H., N. R. Oscar, T. Norman, and D. Henry. 2007. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environ. Sci. Technol. 41: 8439-8446. https://doi.org/10.1021/es070908q
- Kholodii, G. Y., O. V. Yuriera, O. L. Lomovskaya, Z. M. Gorlenko, S. Z. Mindlin, and V. G. Nikiforov. 1993. Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107. https://doi.org/10.1006/jmbi.1993.1228
- Komura, I. and K. Izaki. 1971. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistance strains of Escherichia coli. J. Biochem. 70: 885-893. https://doi.org/10.1093/oxfordjournals.jbchem.a129718
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lyyra, S., R. B. Meagher, T. Kim, A. Heaton, P. Montello, R. S. Balish, and S. A. Merkle. 2007. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol. J. 5: 254-262. https://doi.org/10.1111/j.1467-7652.2006.00236.x
- Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162. https://doi.org/10.1016/S1369-5266(99)00054-0
- Nagata, T., A. Nakamura, T. Akizawa, and H. Pan-Hou. 2009. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol. Pharm. Bull. 32: 1491-1495. https://doi.org/10.1248/bpb.32.1491
- Ruiz, O. N., H. S. Hussein, N. Terry, and H. Daniell. 2003. Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132: 1344-1352. https://doi.org/10.1104/pp.103.020958
- Ruiz, O. N. and H. Daniell. 2009. Genetic engineering to enhance mercury phytoremediation. Curr. Opin. Biotech. 20: 213-219. https://doi.org/10.1016/j.copbio.2009.02.010
- Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. U.S.A. 93: 3182-3187. https://doi.org/10.1073/pnas.93.8.3182
- Rugh, C. L., J. F. Senecoff, R. B. Richard, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925-928. https://doi.org/10.1038/nbt1098-925
- Rugh, C. L. 2001. Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Dev. Biol. Plant 37: 321-325.
- Summers, A. O. and S. Silver. 1972. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 112: 1228-1236.
- Summers, A. O. 1986. Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40: 607-634. https://doi.org/10.1146/annurev.mi.40.100186.003135
Cited by
- Accumulation and translocation of 198Hg in four crop species vol.33, pp.2, 2010, https://doi.org/10.1002/etc.2443
- Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution vol.44, pp.5, 2010, https://doi.org/10.1080/10643389.2012.728811
- The Inhibition Analysis of Two Heavy Metal ATPase Genes (NtHMA3a and NtHMA3b) inNicotiana tabacum vol.19, pp.2, 2015, https://doi.org/10.1080/10889868.2014.995372
- Engineering Tobacco to Remove Mercury from Polluted Soil vol.175, pp.8, 2015, https://doi.org/10.1007/s12010-015-1549-7
- Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass (Cladium jamaicense) in the Florida Everglades Using a Multi-isotope Technique vol.52, pp.6, 2010, https://doi.org/10.1021/acs.est.7b04150
- Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives vol.50, pp.24, 2020, https://doi.org/10.1080/10643389.2019.1705724
- Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives vol.18, pp.5, 2010, https://doi.org/10.3390/ijerph18052435