DOI QR코드

DOI QR Code

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok (Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Tachaapaikoon, Chakrit (Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi) ;
  • Kosugi, Akihiko (Post-Harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences) ;
  • Mori, Yutaka (Post-Harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences) ;
  • Kyu, Khin Lay (Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi,) ;
  • Ratanakhanokchai, Khanok (Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
  • Received : 2009.11.07
  • Accepted : 2010.01.13
  • Published : 2010.05.28

Abstract

A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 251: 403-410.
  2. Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng. 96: 48-56. https://doi.org/10.1002/bit.21175
  3. Bayer, E. A., J.-P. Belaich, Y. Shoham, and R. Lamed. 2004. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
  4. Bayer, E. A., R. Kenig, and R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156: 818-827.
  5. Bayer, E. A., E. Morag, and R. Lamed. 1994. The cellulosome - a treasure-trove for biotechnology. Trends Biotechnol. 12: 379-386. https://doi.org/10.1016/0167-7799(94)90039-6
  6. Beukes, N. and B. I. Pletschke. 2006. Effect of sulfur-containing compounds on Bacillus cellulosome-associated 'CMCase' and 'avicelase' activities. FEMS Microbiol. Lett. 264: 226-231. https://doi.org/10.1111/j.1574-6968.2006.00465.x
  7. Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  8. Bozzola, J. J. and L. D. Russel. 1999. Electron Microscopy: Principles and Techniques for Biologists, 2nd Ed. Jones and Bartlett Publishers, Boston.
  9. Cha, J., S. Matsuoka, H. Chan, H. Yukawa, M. Inui, and R. H. Doi. 2007. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans minicellulosomes. J. Microbiol. Biotechnol. 17: 1782-1788.
  10. Demain, A. L., M. Newcomb, and J. H. D. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69: 124-154. https://doi.org/10.1128/MMBR.69.1.124-154.2005
  11. Doi, R. H. and A. Kosugi. 2004. Cellulosomes: Plant-cell-walldegrading enzyme complexes. Nat. Rev. Microbiol. 2: 541-551. https://doi.org/10.1038/nrmicro925
  12. Erbeznik, M., C. Jones, K. Dawson, and H. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 63: 2949-2951.
  13. Fong, J. C. N., C. J. Svenson, K. Nakasugi, C. T. C. Leong, J. P. Bowman, B. Chen, D. R. Glenn, B. A. Neilan, and P. L. Rogers. 2006. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10: 363-372. https://doi.org/10.1007/s00792-006-0507-2
  14. Garrity, G. 2001. Endospore-forming Gram-positive rods and cocci, pp. 1104-1207. In D. Claus and R. C. W. Berkerley (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Springer Press, Baltimore.
  15. George, S. P., A. Ahmad, and M. B. Rao. 2001. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technol. 77: 171-175. https://doi.org/10.1016/S0960-8524(00)00150-4
  16. Gerngross, U. T., M. P. M. Romaniec, T. Kobayashi, N. S. Huskisson, and A. L. Demain. 1993. Sequencing of Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8: 325-334. https://doi.org/10.1111/j.1365-2958.1993.tb01576.x
  17. Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  18. Horikoshi, K. 1999. Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
  19. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, pp. 117-132. In J. R. Norris and D. W. Ribbons (eds.). Methods in Microbiology, Vol. 3B. Academic Press Inc., New York.
  20. Jagtap, S. and M. Rao. 2005. Purification and properties of a low molecular weight 1,4-$\beta$-D-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem. Biophys. Res. Commun. 329: 111-116. https://doi.org/10.1016/j.bbrc.2005.01.102
  21. Jiang, Z. Q., W. Deng, X. T. Li, Z. L. Ai, L. T. Li, and I. Kusakabe. 2005. Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme Microb. Technol. 36: 923-929. https://doi.org/10.1016/j.enzmictec.2005.01.023
  22. Kaewintajuk, K., G. H. Chon, J.-S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, et al. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261.
  23. Kampfer, P., S. Buczolits, A. Albrecht, H.-J. Busse, and E. Stackebrandt. 2003. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int. J. Syst. Evol. Microbiol. 53: 893-896. https://doi.org/10.1099/ijs.0.02710-0
  24. Koukiekolo, R., H.-Y. Cho, A. Kosugi, M. Inui, H. Yukawa, and R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71: 3504-3511. https://doi.org/10.1128/AEM.71.7.3504-3511.2005
  25. Kurose, N., J. Yagyu, M. Ohmori, M. Matsumoto, K. Ohsato, T. Yamada, M. Uchida, and A. Obayashi. 1989. Characterization of new strains of Clostridium thermocellum and the celA gene from a strain. Agric. Biol. Chem 53: 3179-3185. https://doi.org/10.1271/bbb1961.53.3179
  26. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  27. Larsen, L., P. Nielson, and B. K. Ahring. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168: 114-119. https://doi.org/10.1007/s002030050476
  28. Lee, Y.-S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. Rho, Y.-S. Kim, et al. 2006. Production and localization of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: 921-926.
  29. Li, X., X. Dong, C. Zhao, Z. Chen, and F. Chen. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J. Microbiol. Biotechnol. 19: 375-379. https://doi.org/10.1023/A:1023949022203
  30. Li, Y., Z. Liu, F. Cui, L. Ping, C. Qiu, G. Li, and L. Yan. 2009. Isolation and identification of a newly isolated Alternaria sp. ND-16 and characterization of xylanase. Appl. Biochem. Biotechnol. 157: 36-49. https://doi.org/10.1007/s12010-008-8239-7
  31. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  32. Madden, R. H. 1983. Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 33: 837-840. https://doi.org/10.1099/00207713-33-4-837
  33. Mamo, G., R. Hatti-Kaul, and B. Mattiasson. 2006. A thermostable alkaline active endo-$\beta$-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb. Technol. 39: 1492-1498. https://doi.org/10.1016/j.enzmictec.2006.03.040
  34. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  35. Nakamura, S., Y. Ishiguro, R. Nakai, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Purification and characterization of a thermophilic alkaline xylanase from thermoalkaliphilic Bacillus sp. strain TAR-1. J. Mol. Catal. B Enz. 1: 7-15. https://doi.org/10.1016/1381-1177(95)00003-8
  36. Ng, T. K., P. J. Weimer, and J. G. Zeikus. 1977. Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Microbiol. 114: 1-7. https://doi.org/10.1007/BF00429622
  37. Niu, L., L. Song, X. Liu, and X. Dong. 2009. Tepidimicrobium xylanilyticum sp. nov., an anaerobic xylanolytic bacterium, and emended description of the genus Tepidimicrobium. Int. J. Syst. Evol. Microbiol. 59: 2698-2701. https://doi.org/10.1099/ijs.0.005124-0
  38. Olsson, L. and B. Hahn-Hägerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331. https://doi.org/10.1016/0141-0229(95)00157-3
  39. Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490. https://doi.org/10.1128/AEM.72.4.2483-2490.2006
  40. Ratanakhanokchai, K., K. L. Kyu, and M. Tantichareon. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
  41. Shoham, Y., R. Lamed, and E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7: 275-280. https://doi.org/10.1016/S0966-842X(99)01533-4
  42. Singleton, P. 2004. Bacteria in Biology, Biotechnology and Medicine, 3rd Ed. John Wiley and Sons, West Sussex.
  43. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
  44. Stackebrandt, E., W. Frederiksen, G. M. Garrity, P. A. D. Grimont, P. Kämpfer, M. C. J. Maiden, et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047. https://doi.org/10.1099/ijs.0.02360-0
  45. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
  46. Tachaapaikoon, C., K. L. Kyu, and K. Ratanakhanokchai. 2006. Purification of xylanase from Bacillus sp. K-8 by using corn husk column. Proc. Biochem. 41: 2441-2445. https://doi.org/10.1016/j.procbio.2006.07.004
  47. Tuncer, M., A. S. Ball, A. Rob, and M. T. Wilson. 1999. Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme Microb. Technol. 25: 38-47. https://doi.org/10.1016/S0141-0229(99)00012-5
  48. Waeonukul, R., P. Pason, K. L. Kyu, K. Sakka, A. Kosugi, Y. Mori, and K. Ratanakhanokchai. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-$\beta$-1,4- xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19: 277-285.
  49. Wyman, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25: 153-157. https://doi.org/10.1016/j.tibtech.2007.02.009
  50. Zeikus, J. G. 1979. Thermophilic bacteria: Ecology, physiology and technology. Enzyme Microb. Technol. 1: 243-252. https://doi.org/10.1016/0141-0229(79)90043-7
  51. Zhilina, T. N., V. V. Kevbrin, T. P. Tourova, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 2005. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74: 557-566. https://doi.org/10.1007/s11021-005-0103-y
  52. Zvereva, E. A., T. V. Fedorova, V. V. Kevbrin, T. N. Zhilina, and M. L. Rabinovich. 2006. Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026. Extremophiles 10: 53-60. https://doi.org/10.1007/s00792-005-0472-1

Cited by

  1. Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1 vol.21, pp.3, 2010, https://doi.org/10.4014/jmb.1009.09032
  2. Regulation of Xylanase Biosynthesis in Bacillus cereus BSA1 vol.167, pp.5, 2012, https://doi.org/10.1007/s12010-011-9523-5
  3. Paenibacillus xylaniclasticus sp. nov., a Xylanolytic-Cellulolytic Bacterium Isolated from Sludge in an Anaerobic Digester vol.50, pp.3, 2012, https://doi.org/10.1007/s12275-012-1480-3
  4. A novel multienzyme complex from a newly isolated facultative anaerobic bacterium,Paenibacillussp. TW1 vol.63, pp.2, 2012, https://doi.org/10.1556/abiol.63.2012.2.10
  5. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy vol.58, pp.2, 2013, https://doi.org/10.1007/s12223-012-0184-8
  6. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures vol.99, pp.2, 2010, https://doi.org/10.1007/s00253-014-6036-5
  7. 자이모그라피 기술의 문제점과 해결 vol.29, pp.12, 2019, https://doi.org/10.5352/jls.2019.29.12.1408
  8. A novel amylolytic/xylanolytic/cellulolytic multienzyme complex from Clostridium manihotivorum that hydrolyzes polysaccharides in cassava pulp vol.105, pp.18, 2010, https://doi.org/10.1007/s00253-021-11521-6
  9. Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions vol.9, pp.2, 2010, https://doi.org/10.1128/spectrum.00805-21