References
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 251: 403-410.
- Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol. Bioeng. 96: 48-56. https://doi.org/10.1002/bit.21175
- Bayer, E. A., J.-P. Belaich, Y. Shoham, and R. Lamed. 2004. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
- Bayer, E. A., R. Kenig, and R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156: 818-827.
- Bayer, E. A., E. Morag, and R. Lamed. 1994. The cellulosome - a treasure-trove for biotechnology. Trends Biotechnol. 12: 379-386. https://doi.org/10.1016/0167-7799(94)90039-6
- Beukes, N. and B. I. Pletschke. 2006. Effect of sulfur-containing compounds on Bacillus cellulosome-associated 'CMCase' and 'avicelase' activities. FEMS Microbiol. Lett. 264: 226-231. https://doi.org/10.1111/j.1574-6968.2006.00465.x
- Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
- Bozzola, J. J. and L. D. Russel. 1999. Electron Microscopy: Principles and Techniques for Biologists, 2nd Ed. Jones and Bartlett Publishers, Boston.
- Cha, J., S. Matsuoka, H. Chan, H. Yukawa, M. Inui, and R. H. Doi. 2007. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans minicellulosomes. J. Microbiol. Biotechnol. 17: 1782-1788.
- Demain, A. L., M. Newcomb, and J. H. D. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69: 124-154. https://doi.org/10.1128/MMBR.69.1.124-154.2005
- Doi, R. H. and A. Kosugi. 2004. Cellulosomes: Plant-cell-walldegrading enzyme complexes. Nat. Rev. Microbiol. 2: 541-551. https://doi.org/10.1038/nrmicro925
- Erbeznik, M., C. Jones, K. Dawson, and H. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 63: 2949-2951.
- Fong, J. C. N., C. J. Svenson, K. Nakasugi, C. T. C. Leong, J. P. Bowman, B. Chen, D. R. Glenn, B. A. Neilan, and P. L. Rogers. 2006. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10: 363-372. https://doi.org/10.1007/s00792-006-0507-2
- Garrity, G. 2001. Endospore-forming Gram-positive rods and cocci, pp. 1104-1207. In D. Claus and R. C. W. Berkerley (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Springer Press, Baltimore.
- George, S. P., A. Ahmad, and M. B. Rao. 2001. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technol. 77: 171-175. https://doi.org/10.1016/S0960-8524(00)00150-4
- Gerngross, U. T., M. P. M. Romaniec, T. Kobayashi, N. S. Huskisson, and A. L. Demain. 1993. Sequencing of Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8: 325-334. https://doi.org/10.1111/j.1365-2958.1993.tb01576.x
- Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
- Horikoshi, K. 1999. Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
- Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, pp. 117-132. In J. R. Norris and D. W. Ribbons (eds.). Methods in Microbiology, Vol. 3B. Academic Press Inc., New York.
-
Jagtap, S. and M. Rao. 2005. Purification and properties of a low molecular weight 1,4-
$\beta$ -D-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem. Biophys. Res. Commun. 329: 111-116. https://doi.org/10.1016/j.bbrc.2005.01.102 - Jiang, Z. Q., W. Deng, X. T. Li, Z. L. Ai, L. T. Li, and I. Kusakabe. 2005. Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme Microb. Technol. 36: 923-929. https://doi.org/10.1016/j.enzmictec.2005.01.023
- Kaewintajuk, K., G. H. Chon, J.-S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, et al. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261.
- Kampfer, P., S. Buczolits, A. Albrecht, H.-J. Busse, and E. Stackebrandt. 2003. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int. J. Syst. Evol. Microbiol. 53: 893-896. https://doi.org/10.1099/ijs.0.02710-0
- Koukiekolo, R., H.-Y. Cho, A. Kosugi, M. Inui, H. Yukawa, and R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71: 3504-3511. https://doi.org/10.1128/AEM.71.7.3504-3511.2005
- Kurose, N., J. Yagyu, M. Ohmori, M. Matsumoto, K. Ohsato, T. Yamada, M. Uchida, and A. Obayashi. 1989. Characterization of new strains of Clostridium thermocellum and the celA gene from a strain. Agric. Biol. Chem 53: 3179-3185. https://doi.org/10.1271/bbb1961.53.3179
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Larsen, L., P. Nielson, and B. K. Ahring. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168: 114-119. https://doi.org/10.1007/s002030050476
- Lee, Y.-S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. Rho, Y.-S. Kim, et al. 2006. Production and localization of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: 921-926.
- Li, X., X. Dong, C. Zhao, Z. Chen, and F. Chen. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J. Microbiol. Biotechnol. 19: 375-379. https://doi.org/10.1023/A:1023949022203
- Li, Y., Z. Liu, F. Cui, L. Ping, C. Qiu, G. Li, and L. Yan. 2009. Isolation and identification of a newly isolated Alternaria sp. ND-16 and characterization of xylanase. Appl. Biochem. Biotechnol. 157: 36-49. https://doi.org/10.1007/s12010-008-8239-7
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Madden, R. H. 1983. Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int. J. Syst. Bacteriol. 33: 837-840. https://doi.org/10.1099/00207713-33-4-837
-
Mamo, G., R. Hatti-Kaul, and B. Mattiasson. 2006. A thermostable alkaline active endo-
$\beta$ -1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb. Technol. 39: 1492-1498. https://doi.org/10.1016/j.enzmictec.2006.03.040 - Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
- Nakamura, S., Y. Ishiguro, R. Nakai, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Purification and characterization of a thermophilic alkaline xylanase from thermoalkaliphilic Bacillus sp. strain TAR-1. J. Mol. Catal. B Enz. 1: 7-15. https://doi.org/10.1016/1381-1177(95)00003-8
- Ng, T. K., P. J. Weimer, and J. G. Zeikus. 1977. Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Microbiol. 114: 1-7. https://doi.org/10.1007/BF00429622
- Niu, L., L. Song, X. Liu, and X. Dong. 2009. Tepidimicrobium xylanilyticum sp. nov., an anaerobic xylanolytic bacterium, and emended description of the genus Tepidimicrobium. Int. J. Syst. Evol. Microbiol. 59: 2698-2701. https://doi.org/10.1099/ijs.0.005124-0
- Olsson, L. and B. Hahn-Hägerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331. https://doi.org/10.1016/0141-0229(95)00157-3
- Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490. https://doi.org/10.1128/AEM.72.4.2483-2490.2006
- Ratanakhanokchai, K., K. L. Kyu, and M. Tantichareon. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
- Shoham, Y., R. Lamed, and E. A. Bayer. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7: 275-280. https://doi.org/10.1016/S0966-842X(99)01533-4
- Singleton, P. 2004. Bacteria in Biology, Biotechnology and Medicine, 3rd Ed. John Wiley and Sons, West Sussex.
- Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
- Stackebrandt, E., W. Frederiksen, G. M. Garrity, P. A. D. Grimont, P. Kämpfer, M. C. J. Maiden, et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047. https://doi.org/10.1099/ijs.0.02360-0
- Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
- Tachaapaikoon, C., K. L. Kyu, and K. Ratanakhanokchai. 2006. Purification of xylanase from Bacillus sp. K-8 by using corn husk column. Proc. Biochem. 41: 2441-2445. https://doi.org/10.1016/j.procbio.2006.07.004
- Tuncer, M., A. S. Ball, A. Rob, and M. T. Wilson. 1999. Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme Microb. Technol. 25: 38-47. https://doi.org/10.1016/S0141-0229(99)00012-5
-
Waeonukul, R., P. Pason, K. L. Kyu, K. Sakka, A. Kosugi, Y. Mori, and K. Ratanakhanokchai. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-
$\beta$ -1,4- xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19: 277-285. - Wyman, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25: 153-157. https://doi.org/10.1016/j.tibtech.2007.02.009
- Zeikus, J. G. 1979. Thermophilic bacteria: Ecology, physiology and technology. Enzyme Microb. Technol. 1: 243-252. https://doi.org/10.1016/0141-0229(79)90043-7
- Zhilina, T. N., V. V. Kevbrin, T. P. Tourova, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 2005. Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74: 557-566. https://doi.org/10.1007/s11021-005-0103-y
- Zvereva, E. A., T. V. Fedorova, V. V. Kevbrin, T. N. Zhilina, and M. L. Rabinovich. 2006. Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026. Extremophiles 10: 53-60. https://doi.org/10.1007/s00792-005-0472-1
Cited by
- Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1 vol.21, pp.3, 2010, https://doi.org/10.4014/jmb.1009.09032
- Regulation of Xylanase Biosynthesis in Bacillus cereus BSA1 vol.167, pp.5, 2012, https://doi.org/10.1007/s12010-011-9523-5
- Paenibacillus xylaniclasticus sp. nov., a Xylanolytic-Cellulolytic Bacterium Isolated from Sludge in an Anaerobic Digester vol.50, pp.3, 2012, https://doi.org/10.1007/s12275-012-1480-3
- A novel multienzyme complex from a newly isolated facultative anaerobic bacterium,Paenibacillussp. TW1 vol.63, pp.2, 2012, https://doi.org/10.1556/abiol.63.2012.2.10
- Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy vol.58, pp.2, 2013, https://doi.org/10.1007/s12223-012-0184-8
- Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures vol.99, pp.2, 2010, https://doi.org/10.1007/s00253-014-6036-5
- 자이모그라피 기술의 문제점과 해결 vol.29, pp.12, 2019, https://doi.org/10.5352/jls.2019.29.12.1408
- A novel amylolytic/xylanolytic/cellulolytic multienzyme complex from Clostridium manihotivorum that hydrolyzes polysaccharides in cassava pulp vol.105, pp.18, 2010, https://doi.org/10.1007/s00253-021-11521-6
- Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions vol.9, pp.2, 2010, https://doi.org/10.1128/spectrum.00805-21