DOI QR코드

DOI QR Code

Screening, Characterization, and Cloning of a Solvent-Tolerant Protease from Serratia marcescens MH6

  • Wan, Mao-Hua (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Wu, Bin (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Ren, Wei (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • He, Bing-Fang (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
  • Received : 2009.10.25
  • Accepted : 2010.01.22
  • Published : 2010.05.28

Abstract

solvent-tolerant bacterium strain, MH6, was isolated by hydrophilic organic solvent DMSO enrichment in the medium and identified as Serratia marcescens. The extracellular protease with novel organic-solvent-stable properties from strain MH6 was purified and characterized. The molecular mass of the purified protease was estimated to be 52 kDa on SDS-PAGE. The open reading frame (ORF) of the MH6 protease encoded 504 amino acids with 471 amino acid residues in the mature protease. Based on the inhibitory effects of EDTA and 1,10-phenathroline, the MH6 protease was characterized as a metalloproteinase. The enzyme activity was increased in the presence of $Ni^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. The protease could also be activated by the nonionic surfactants Tween 80 (1.0%) and Triton X-100 (1.0%). The protease showed remarkable solvent stability in the presence of 50% (v/v) solutions of long-chain alkanes and long-chain alcohols. It was also fairly stable in the presence of 25% solutions of hydrophilic organic solvents. Owing to its high stability in solvents and surfactants, the MH6 protease is an ideal candidate for applications in organic catalysis and other related fields.

Keywords

References

  1. Aiyappa, P. S. and J. O. Harris. 1976. The extracellular metalloprotease of Serratia marcescens: I. Purification and characterization. Mol. Cell Biochem. 13: 95-100. https://doi.org/10.1007/BF01837059
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Braunagel, S. C. and M. J. Benedik. 1990. The metalloprotease gene of Serratia marcescens strain SM6. Molec. Gen. Genet. MGG 222: 446-451. https://doi.org/10.1007/BF00633854
  4. David, N. P., J. C. P. Darryl, M. C. David, and S. C. John. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
  5. Fang, Y. W., S. Liu, S. J. Wang, and M. S. Lv. 2009. Isolation and screening of a novel extracellular organic solvent-stable protease producer. Biochem. Eng. J. 43: 212-215. https://doi.org/10.1016/j.bej.2008.10.001
  6. Geok, L. P., C. N. A. Razak, R. N. Z. Abd Rahman, M. Basri, and A. B. Salleh. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13: 73-77. https://doi.org/10.1016/S1369-703X(02)00137-7
  7. Gupta, A. and S. K. Khare. 2006. A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technol. 97: 1788-1793. https://doi.org/10.1016/j.biortech.2005.09.006
  8. Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization - Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
  9. Kato, C., A. Inoue, and K. Horikoshi. 1996. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 14: 6-12. https://doi.org/10.1016/0167-7799(96)80907-3
  10. Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241-246. https://doi.org/10.1038/35051719
  11. Lalonde, J., E. Witte, M. O'Connell, and L. Holliday. 1995. Protease stabilization by highly concentrated anionic surfactant mixtures. J. Am. Oil Chem. Soc. 72: 53-59. https://doi.org/10.1007/BF02635779
  12. Li, S., B. F. He, Z. Z. Bai, and P. K. Ouyang. 2009. A novel organic solvent-stable alkaline protease from organic solventtolerant Bacillus licheniformis YP1A. J. Molec. Catal. B Enz. 56: 85-88. https://doi.org/10.1016/j.molcatb.2008.08.001
  13. Na, K. S., A. Kuroda, N. Takiguchi, T. Ikeda, H. Ohtake, and J. Kato. 2005. Isolation and characterization of benzene tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99: 378-382. https://doi.org/10.1263/jbb.99.378
  14. Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729. https://doi.org/10.1007/s002530051456
  15. Ogino, H. and H. Ishikawa. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91: 109-116. https://doi.org/10.1263/jbb.91.109
  16. Ogino, H., S. Nakagawa, K. Shinya, T. Muto, N. Fujimura, M. Yasuda, and H. Ishikawa. 2000. Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451-457. https://doi.org/10.1016/S1389-1723(00)89095-7
  17. Ogino, H., T. Uchiho, N. Doukyu, M. Yasuda, K. Ishimi, and H. Ishikawa. 2007. Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem. Biophys. Res. Commun. 358: 1028-1103. https://doi.org/10.1016/j.bbrc.2007.05.047
  18. Rahman, R. N. Z. R. A., L. P. Geok, M. Basri, and A. B. Salleh. 2006. An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme purification and characterization. Enz. Microb. Technol. 39: 1484-1491. https://doi.org/10.1016/j.enzmictec.2006.03.038
  19. Rahman, R. N. Z. R. A., S. Mahamad, A. B. Salleh, and M. Basri. 2007. A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Industr. Microbiol. Biotechnol. 34: 509-517. https://doi.org/10.1007/s10295-007-0222-8
  20. Rai, S. K. and A. K. Mukherjee. 2009. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM- 04. Bioresource Technol. 100: 2642-2645. https://doi.org/10.1016/j.biortech.2008.11.042
  21. Rolland, V. and R. Lazaro. 2001. Synthetic Applications of Enzymes in Nonaqueous Media, pp. 357-371.
  22. Romero, F. J., L. A. Garcia, J. A. Salas, M. Diaz, and L. M. Quiros. 2001. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem. 36: 507-515.
  23. Roy, I., S. Sharma, and M. N. Gupta. 2004. Smart Biocatalysts: Design and Applications, pp. 251-310.
  24. Sardessai, Y. and S. Bhosle. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153: 263-268. https://doi.org/10.1016/S0923-2508(02)01319-0
  25. Sareen, R., U. T. Bornscheuer, and P. Mishra. 2004. Synthesis of kyotorphin precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-37. J. Molec. Catal. B Enz. 32: 1-5. https://doi.org/10.1016/j.molcatb.2004.09.006
  26. Shimogaki, H., K. Takeuchi, T. Nishino, M. Ohdera, T. Kudo, K. Ohba, M. Iwama, and M. Irie. 1991. Purification and properties of a novel surface active agent and alkaline resistant protease from Bacillus sp. Y. Agric. Biol. Chem. 55: 2251-2258. https://doi.org/10.1271/bbb1961.55.2251
  27. Shome, A., S. Roy, and P. K. Das. 2007. Nonionic surfactants: A key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir 23: 4130-4136. https://doi.org/10.1021/la062804j
  28. So, J. E., J. S. Shin, and B. G. Kim. 2000. Protease-catalyzed tripeptide (RGD) synthesis. Enz. Microb. Technol. 26: 108-114. https://doi.org/10.1016/S0141-0229(99)00132-5
  29. Tang, X. Y., B. Wu, H. J. Ying, and B. F. He. Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl. Biochem. Biotechnol. 160: 1017-1031.
  30. Tang, X. Y., Y. Pan, S. Li, and B. F. He. 2008. Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresource Technol. 99: 7388-7392. https://doi.org/10.1016/j.biortech.2008.01.030
  31. Tsuchiyama, S., N. Doukyu, M. Yasuda, K. Ishimi, and H. Ogino. 2007. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueousorganic solvent systems. Biotechnol. Progr. 23: 820-823. https://doi.org/10.1002/bp060382y
  32. Ustariz, F. J., A. Laca, L. A. Garcia, and M. Diaz. 2008. Fermentation conditions increasing protease production by Serratia marcescens in fresh whey. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia 31: 79-89.
  33. Wang, S. L., J. H. Peng, T. W. Liang, and K. C. Liu. 2008. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323. https://doi.org/10.1016/j.carres.2008.03.030
  34. Yogita, N. and S. B. Sardessai. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Progress 20: 655-660. https://doi.org/10.1021/bp0200595
  35. Zhao, L. L., J. H. Xu, J. Zhao, J. Pan, and Z. L. Wang. 2008. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem. 43: 626-633. https://doi.org/10.1016/j.procbio.2008.01.023

Cited by

  1. Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production vol.28, pp.4, 2010, https://doi.org/10.1016/j.nbt.2011.03.009
  2. Investigation of Organic Solvent Resistance Mechanisms in Vibrio alginolyticus IBBCt2 vol.223, pp.7, 2012, https://doi.org/10.1007/s11270-012-1212-7
  3. Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure vol.73, pp.6, 2010, https://doi.org/10.1007/s00284-016-1108-7
  4. Comparison of Intestinal Microbiota in Intestinal Tracts of the Wild and Cultured Seahorses, Hippocampus trimaculatus (Leach) vol.47, pp.1, 2016, https://doi.org/10.1111/jwas.12251
  5. Highly Solvent Tolerance in Serratia marcescens IBBPo15 vol.59, pp.None, 2016, https://doi.org/10.1590/1678-4324-2016160268