References
- Aiyappa, P. S. and J. O. Harris. 1976. The extracellular metalloprotease of Serratia marcescens: I. Purification and characterization. Mol. Cell Biochem. 13: 95-100. https://doi.org/10.1007/BF01837059
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Braunagel, S. C. and M. J. Benedik. 1990. The metalloprotease gene of Serratia marcescens strain SM6. Molec. Gen. Genet. MGG 222: 446-451. https://doi.org/10.1007/BF00633854
- David, N. P., J. C. P. Darryl, M. C. David, and S. C. John. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
- Fang, Y. W., S. Liu, S. J. Wang, and M. S. Lv. 2009. Isolation and screening of a novel extracellular organic solvent-stable protease producer. Biochem. Eng. J. 43: 212-215. https://doi.org/10.1016/j.bej.2008.10.001
- Geok, L. P., C. N. A. Razak, R. N. Z. Abd Rahman, M. Basri, and A. B. Salleh. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13: 73-77. https://doi.org/10.1016/S1369-703X(02)00137-7
- Gupta, A. and S. K. Khare. 2006. A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technol. 97: 1788-1793. https://doi.org/10.1016/j.biortech.2005.09.006
- Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization - Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
- Kato, C., A. Inoue, and K. Horikoshi. 1996. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 14: 6-12. https://doi.org/10.1016/0167-7799(96)80907-3
- Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241-246. https://doi.org/10.1038/35051719
- Lalonde, J., E. Witte, M. O'Connell, and L. Holliday. 1995. Protease stabilization by highly concentrated anionic surfactant mixtures. J. Am. Oil Chem. Soc. 72: 53-59. https://doi.org/10.1007/BF02635779
- Li, S., B. F. He, Z. Z. Bai, and P. K. Ouyang. 2009. A novel organic solvent-stable alkaline protease from organic solventtolerant Bacillus licheniformis YP1A. J. Molec. Catal. B Enz. 56: 85-88. https://doi.org/10.1016/j.molcatb.2008.08.001
- Na, K. S., A. Kuroda, N. Takiguchi, T. Ikeda, H. Ohtake, and J. Kato. 2005. Isolation and characterization of benzene tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99: 378-382. https://doi.org/10.1263/jbb.99.378
- Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729. https://doi.org/10.1007/s002530051456
- Ogino, H. and H. Ishikawa. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91: 109-116. https://doi.org/10.1263/jbb.91.109
- Ogino, H., S. Nakagawa, K. Shinya, T. Muto, N. Fujimura, M. Yasuda, and H. Ishikawa. 2000. Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451-457. https://doi.org/10.1016/S1389-1723(00)89095-7
- Ogino, H., T. Uchiho, N. Doukyu, M. Yasuda, K. Ishimi, and H. Ishikawa. 2007. Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem. Biophys. Res. Commun. 358: 1028-1103. https://doi.org/10.1016/j.bbrc.2007.05.047
- Rahman, R. N. Z. R. A., L. P. Geok, M. Basri, and A. B. Salleh. 2006. An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme purification and characterization. Enz. Microb. Technol. 39: 1484-1491. https://doi.org/10.1016/j.enzmictec.2006.03.038
- Rahman, R. N. Z. R. A., S. Mahamad, A. B. Salleh, and M. Basri. 2007. A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Industr. Microbiol. Biotechnol. 34: 509-517. https://doi.org/10.1007/s10295-007-0222-8
- Rai, S. K. and A. K. Mukherjee. 2009. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM- 04. Bioresource Technol. 100: 2642-2645. https://doi.org/10.1016/j.biortech.2008.11.042
- Rolland, V. and R. Lazaro. 2001. Synthetic Applications of Enzymes in Nonaqueous Media, pp. 357-371.
- Romero, F. J., L. A. Garcia, J. A. Salas, M. Diaz, and L. M. Quiros. 2001. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem. 36: 507-515.
- Roy, I., S. Sharma, and M. N. Gupta. 2004. Smart Biocatalysts: Design and Applications, pp. 251-310.
- Sardessai, Y. and S. Bhosle. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153: 263-268. https://doi.org/10.1016/S0923-2508(02)01319-0
- Sareen, R., U. T. Bornscheuer, and P. Mishra. 2004. Synthesis of kyotorphin precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-37. J. Molec. Catal. B Enz. 32: 1-5. https://doi.org/10.1016/j.molcatb.2004.09.006
- Shimogaki, H., K. Takeuchi, T. Nishino, M. Ohdera, T. Kudo, K. Ohba, M. Iwama, and M. Irie. 1991. Purification and properties of a novel surface active agent and alkaline resistant protease from Bacillus sp. Y. Agric. Biol. Chem. 55: 2251-2258. https://doi.org/10.1271/bbb1961.55.2251
- Shome, A., S. Roy, and P. K. Das. 2007. Nonionic surfactants: A key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir 23: 4130-4136. https://doi.org/10.1021/la062804j
- So, J. E., J. S. Shin, and B. G. Kim. 2000. Protease-catalyzed tripeptide (RGD) synthesis. Enz. Microb. Technol. 26: 108-114. https://doi.org/10.1016/S0141-0229(99)00132-5
- Tang, X. Y., B. Wu, H. J. Ying, and B. F. He. Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl. Biochem. Biotechnol. 160: 1017-1031.
- Tang, X. Y., Y. Pan, S. Li, and B. F. He. 2008. Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresource Technol. 99: 7388-7392. https://doi.org/10.1016/j.biortech.2008.01.030
- Tsuchiyama, S., N. Doukyu, M. Yasuda, K. Ishimi, and H. Ogino. 2007. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueousorganic solvent systems. Biotechnol. Progr. 23: 820-823. https://doi.org/10.1002/bp060382y
- Ustariz, F. J., A. Laca, L. A. Garcia, and M. Diaz. 2008. Fermentation conditions increasing protease production by Serratia marcescens in fresh whey. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia 31: 79-89.
- Wang, S. L., J. H. Peng, T. W. Liang, and K. C. Liu. 2008. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323. https://doi.org/10.1016/j.carres.2008.03.030
- Yogita, N. and S. B. Sardessai. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Progress 20: 655-660. https://doi.org/10.1021/bp0200595
- Zhao, L. L., J. H. Xu, J. Zhao, J. Pan, and Z. L. Wang. 2008. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem. 43: 626-633. https://doi.org/10.1016/j.procbio.2008.01.023
Cited by
- Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production vol.28, pp.4, 2010, https://doi.org/10.1016/j.nbt.2011.03.009
- Investigation of Organic Solvent Resistance Mechanisms in Vibrio alginolyticus IBBCt2 vol.223, pp.7, 2012, https://doi.org/10.1007/s11270-012-1212-7
- Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure vol.73, pp.6, 2010, https://doi.org/10.1007/s00284-016-1108-7
- Comparison of Intestinal Microbiota in Intestinal Tracts of the Wild and Cultured Seahorses, Hippocampus trimaculatus (Leach) vol.47, pp.1, 2016, https://doi.org/10.1111/jwas.12251
- Highly Solvent Tolerance in Serratia marcescens IBBPo15 vol.59, pp.None, 2016, https://doi.org/10.1590/1678-4324-2016160268