References
- Anderson, A. J. and E. A. Dawes. 1990. Occurence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
- Andrade, J. C. and I. Vasconcelos. 2003. Continuous cultures of Clostridium acetobutylicum: Culture stability and low-grade glycerol utilizations. Biotechnol. Lett. 25: 121-125. https://doi.org/10.1023/A:1021911217270
- Ashby, R. D., D. K. Y. Solaiman, and T. A. Foglia. 2004. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12: 105-112. https://doi.org/10.1023/B:JOOE.0000038541.54263.d9
- Bitton, G. 2005. Wastewater Microbiology, 2nd Ed. Wiley-Liss, New York.
-
Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-
$\beta$ - hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 6: 29-37. https://doi.org/10.1007/BF00500854 - Brenner, K., L. You, and F. H. Arnold. 2008. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26: 483-489. https://doi.org/10.1016/j.tibtech.2008.05.004
- Ciesielski, S., A. Cydzik-Kwiatkowska, T. Pokoj, and E. Klimiuk. 2006. Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199. https://doi.org/10.1111/j.1365-2672.2006.02973.x
- Ciesielski, S., E. Klimiuk, J. Mo ejko, E. Nowakowska, and T. Pokoj. 2009. Changes in microbial community structures during adaptation towards polyhydroxyalkanoates production. Pol. J. Microbiol. 58: 131-139.
- Cilia, V., B. Lafay, and R. Christen. 1996. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol. Evol. 13: 451-461. https://doi.org/10.1093/oxfordjournals.molbev.a025606
-
Comeau, Y., K. J. Hall, and W. K. Oldham. 1988. Determination of poly-
$\beta$ -hydroxybutyrate and poly-$\beta$ -hydroxyvalerate in activated sludge by gas-liquid chromatography. Appl. Environ. Microbiol. 54: 2325-2327. - Dahllof, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13: 213-217. https://doi.org/10.1016/S0958-1669(02)00314-2
- da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
- Dias, J. M. L., P. C. Lemos, L. S. Serafim, C. Oliveira, M. Eiroa, M. G. E. Albuquerque, A. M. Ramos, R. Oliveira, and M. A. M. Reis. 2006. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product. Macromol. Biosci. 6: 885-906. https://doi.org/10.1002/mabi.200600112
- Dolzani, L., E. Tonin, C. Lagatolla, L. Prandin, and C. Monti- Bragadin. 1996. Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J. Clin. Microbiol. 33: 1108-1113.
- Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630-4636.
- Garcia-Martinez, J., S. G. Acinas, A. I. Anton, and F. Rodriguez- Valera. 1999. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Methods 36: 55-64. https://doi.org/10.1016/S0167-7012(99)00011-1
- Gurtler, V. and V. A. Stanisich. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16. https://doi.org/10.1099/13500872-142-1-3
- Kadouri, D., E. Jurkevitch, Y. Okon, and S. Castro-Sowinski. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67. https://doi.org/10.1080/10408410590899228
- Kisand, V. and J. Wikner. 2003. Combining culture-dependent and -independent methodologies for estimation of richness of estuarine bacterioplankton consuming river in dissolved organic matter. Appl. Environ. Microbiol. 69: 3607-3616. https://doi.org/10.1128/AEM.69.6.3607-3616.2003
- Kleerebezem, R. and M. C. M. van Loosdrecht. 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207-212. https://doi.org/10.1016/j.copbio.2007.05.001
- Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17: 1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
- Liu, Q.-M., L. N. Ten, H.-S. Yu, F.-X. Jin, W.-T. Im, and S.-T. Lee. 2008. Emticicia ginsengisoli sp. nov., a species of the family 'Flexibacteraceae' isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 58: 1100-1105. https://doi.org/10.1099/ijs.0.65386-0
- Miskin, I. P., P. Farrimond, and I. M. Head. 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145: 1977-1987. https://doi.org/10.1099/13500872-145-8-1977
- Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
- Pachauri, N. and B. He. 2006. Value added utilization of crude glycerol from biodiesel production: A survey of current research activities. ASABE Meeting Presentation.
- Rehm, B. H. A. and A. Steinbüchel. 2003. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromolec. 25: 3-19.
- Reis, M. A. M., L. S. Serafim, P. C. Lemos, A. M. Ramos, F. R. Aguiar, and M. C. M. van Loosdrecht. 2003. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 25: 377-385. https://doi.org/10.1007/s00449-003-0322-4
- Romo, D. M. R., M. V. Grosso, N. C. M. Solano, and D. M. Castano. 2007. A most effective method for selecting a broad range of short and medium-chain-length polyhydroxyalkanoates producing microorganisms. Electron. J. Biotechnol. 10: 348-357.
- Saha, P. and T. Chakrabarti. 2006. Emticicia oligotrophica gen. nov., sp. nov., a new member of the family 'Flexibacteraceae', phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 56: 991-995. https://doi.org/10.1099/ijs.0.64086-0
- Sanz, J. L. and T. Köchling. 2007. Molecular biology techniques used in wastewater treatment: An overview. Process Biochem. 42: 119-133. https://doi.org/10.1016/j.procbio.2006.10.003
- Serafim, L. S., P. C. Lemos, R. Oliveira, and M. A. M. Reis. 2004. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 87: 145-160. https://doi.org/10.1002/bit.20085
- Serafim, L. S., P. C. Lemos, M. G. E. Albuquerque, and M. A. M. Reis. 2008. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81: 615-628. https://doi.org/10.1007/s00253-008-1757-y
- Schippers, A., K. Bosecker, C. Spröer, and P. Schumann. 2005. Microbacterium oleovorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Grampositive bacteria. Int. J. Syst. Evol. Microbiol. 55: 655-660. https://doi.org/10.1099/ijs.0.63305-0
- Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
- Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2000. Rapid identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol.Biotechnol. 53: 690-694. https://doi.org/10.1007/s002530000332
- Stackebrandt, E. and B. M. Goebel. 1994. A place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
-
Steinbuchel, A. and H. G. Schlegel. 1991. Physiology and molecular genetics of poly (
$\beta$ -hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535-542. https://doi.org/10.1111/j.1365-2958.1991.tb00725.x - Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002
Cited by
- Waste rapeseed oil as a substrate for medium‐chain‐length polyhydroxyalkanoates production vol.113, pp.12, 2010, https://doi.org/10.1002/ejlt.201100148
- Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate vol.27, pp.7, 2010, https://doi.org/10.1007/s11274-010-0605-2
- Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate vol.27, pp.7, 2010, https://doi.org/10.1007/s11274-010-0605-2
- Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source vol.22, pp.3, 2010, https://doi.org/10.4014/jmb.1106.06039
- Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1111.11040
- Industrial biotechnology of Pseudomonas putida and related species vol.93, pp.6, 2010, https://doi.org/10.1007/s00253-012-3928-0
- Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida vol.6, pp.5, 2013, https://doi.org/10.1111/1751-7915.12040
- Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability vol.5, pp.1, 2010, https://doi.org/10.1007/s13205-014-0198-9
- Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production vol.15, pp.4, 2016, https://doi.org/10.1007/s11157-016-9411-0
- Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production vol.44, pp.8, 2017, https://doi.org/10.1007/s10295-017-1951-y
- Production of polyhydroxyalkanoates and enrichment of associated microbes in bioreactors fed with rice winery wastewater at various organic loading rates vol.292, pp.None, 2010, https://doi.org/10.1016/j.biortech.2019.121978
- What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? vol.13, pp.11, 2010, https://doi.org/10.3390/polym13111731
- Factors Influencing the Fungal Diversity on Audio-Visual Materials vol.9, pp.12, 2021, https://doi.org/10.3390/microorganisms9122497
- Wood Juice Valorization through Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Bacillus sp. G8_19 vol.9, pp.50, 2010, https://doi.org/10.1021/acssuschemeng.1c06856