DOI QR코드

DOI QR Code

Proteomic Analysis of Pancreata from Mini-Pigs Treated with Streptozotocin as Type I Diabetes Models

  • Received : 2009.09.18
  • Accepted : 2009.11.16
  • Published : 2010.04.28

Abstract

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by extreme insulin deficiency due to an overall reduction in the mass of functional pancreatic ${\beta}$-cells. Several animal models have been used to study T1DM. Amongst these, the mini-pig seems to be the most ideal model for diabetes research, owing to similarities with humans in anatomy and physiology. The purpose of this study was to analyze differentially expressed pancreatic proteins in a streptozotocin (STZ)-induced mini-pig T1DM model. Pancreas proteins from mini-pigs treated with STZ were separated by two-dimensional gel electrophoresis, and 11 protein spots were found to be altered significantly when compared with control mini-pigs. The data in this study utilizing proteomic analysis provide a valuable resource for the further understanding of the T1DM pathomechanism.

Keywords

References

  1. Araki, E., S. Oyadomari, and M. Mori. 2003. Impact of endoplasmic reticulum stress pathway on pancreatic $\beta$-cells and diabetes mellitus. Exp. Biol. Med. 228: 1213-1217.
  2. Atkinson, M. A. and R. Gianani. 2009. The pancreas in human type I diabetes: Providing new answers to age-old questions. Curr. Opin. Endocrinol. Obes. 16: 279-285. https://doi.org/10.1097/MED.0b013e32832e06ba
  3. Canavan, J. P., P. A. Flecknell, J. P. New, K. G. Alberti, and P. D. Home. 1997. The effect of portal and peripheral insulin delivery on carbohydrate and lipid metabolism in a miniature pig model of human IDDM. Diabetologia 40: 1125-1134. https://doi.org/10.1007/s001250050797
  4. Chatzigeorgiou, A., A. Halapas, K. Kalafatakis, and E. Kamper. 2009. The use of animal model in the study of diabetes mellitus. In Vivo 23: 245-258.
  5. Giarratana, N., G. Penna, and L. Adorini. 2007. Animal models of spontaneous autoimmune disease: Type 1 diabetes in the nonobese diabetic mouse. Methods Mol. Biol. 380: 285-311. https://doi.org/10.1007/978-1-59745-395-0_17
  6. Herr, R. R., J. K. Jahnke, and A. D. Argoudelis. 1967. The structure of streptozotocin. J. Am. Chem. Soc. 89: 4808-4809. https://doi.org/10.1021/ja00994a053
  7. Hu, L., S. Evers, Z. H. Lu, Y. Shen, and J. Chen. 2004. Two-dimensional protein database of human pancreas. Electrophoresis 25: 512-518. https://doi.org/10.1002/elps.200305683
  8. Jang, M., B. C. Park, S. Kang, S.-W. Chi, S. Cho, S. J. Chung, S. C. Lee, K.-H. Bae, and S. G. Park. 2009. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene 28: 1529-1536. https://doi.org/10.1038/onc.2009.11
  9. Jin, J., J. Park, K. Kim, Y. Kang, S. G. Park, J. H. Kim, K. S. Park, H. Jun, and Y. Kim. 2009. Detection of differential proteomes of human $\beta$-cells during islet-like differentiation using iTRAQ labeling. J. Proteome Res. 8: 1393-1403. https://doi.org/10.1021/pr800765t
  10. Kang, T. H., K.-H. Bae, M.-J. Yu, W.-K. Kim, H.-R. Hwang, H. Jung, et al. 2007. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 7: 2624-2635. https://doi.org/10.1002/pmic.200601028
  11. Kim, S. W., H. J. Hwang, Y. M. Baek, S. H. Lee, H. S. Hwang, and J. W. Yun. 2008. Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 8: 2344-2361. https://doi.org/10.1002/pmic.200700779
  12. Kim, S. Y., P. Y. Lee, H.-J. Shin, D. H. Kim, S. Kang, H. B. Moon, et al. 2009. Proteomic analysis of liver tissue from HBx-transgenic mice at early stages of hepatocarcinogenesis. Proteomics 9: 5056-5066. https://doi.org/10.1002/pmic.200800779
  13. Kim, W. K., H. J. Cho, S. I. Ryu, H.-R. Hwang, D.-H. Kim, H. Y. Ryu, et al. 2008. Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors. BMB Rep. 41: 597-603. https://doi.org/10.5483/BMBRep.2008.41.8.597
  14. Kim, W. K., H.-R. Hwang, D. H. Kim, P. Y. Lee, Y. J. In, H.-Y. Ryu, S. G. Park, K.-H. Bae, and S. C. Lee. 2008. Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Exp. Mol. Med. 40: 677-685. https://doi.org/10.3858/emm.2008.40.6.677
  15. Kubisch, C., M. D. Sans, T. Arumugam, S. A. Ernst, J. A. Williams, and C. D. Logsdon. 2006. Early activation of endoplasmic reticulum stress is associated with arginine-induced acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 291: G238-G245. https://doi.org/10.1152/ajpgi.00471.2005
  16. Larsen, M. O. and B. Rolin. 2004. Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 45: 303-313. https://doi.org/10.1093/ilar.45.3.303
  17. Marshall, M., U. Sprandel, and N. Zollner. 1975. Streptozotocin diabetes in a miniature pig. Res. Exp. Med. 165: 61-65. https://doi.org/10.1007/BF01856450
  18. Marshall, M., H. Oberhofer, and J. Staubesand. 1980. Early micro- and macro-angiopathy in the streptozotocin diabetic minipig. Res. Exp. Med. 177: 145-158. https://doi.org/10.1007/BF01851843
  19. Nielsen, K., T. Sparre, M. R. Larsen, M. Nielsen, S. J. Fey, P. Mose Larsen, P. Roepstorff, J. Nerup, and A. E. Karlen. 2004. Protein expression changes in a $\beta$-cell maturation reflect an acquired sensitivity to IL-$1{\beta}$. Diabetologia 47: 62-74. https://doi.org/10.1007/s00125-003-1277-3
  20. Oyadomari, S., E. Araki, and M. Mori. 2002. Endoplasmic reticulum stress-mediated apoptosis in pancreatic $\beta$-cells. Apoptosis 7: 335-345. https://doi.org/10.1023/A:1016175429877
  21. Rossini, A. A., A. A. Like, W. L. Chick, M. C. Appel, and G. F. Cahill. 1977. Studies of streptozotocin-induced insulitis and diabetes. Proc. Natl. Acad. Sci. U.S.A. 74: 2485-2489. https://doi.org/10.1073/pnas.74.6.2485
  22. Skyler, J. S. 2007. Prediction and prevention of type 1 diabetes: Progress, problems, and prospects. Clin. Pharmacol. Ther. 81: 768-771. https://doi.org/10.1038/sj.clpt.6100179
  23. Sparre, T., R. Bergholdt, J. Neryp, and F. Pociot. 2003. Application of genomics and proteomics in type 1 diabetes pathogenesis research. Expert Rev. Mol. Diagn. 3: 743-757. https://doi.org/10.1586/14737159.3.6.743
  24. Sparre, R., M. R. Larsen, P. E. Heding, A. E. Karlsen, O. N. Jensen, and F. Pociot. 2005. Unraveling the pathogenesis of type 1 diabetes with proteomics. Mol. Cell. Proteomics 4: 441-457. https://doi.org/10.1074/mcp.R500002-MCP200
  25. Xie, X., S. Li, S. Liu, Y. Lu, P. Shen, and J. Ji. 2008. Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection. Biochim. Biophys. Acta 1784: 276-284. https://doi.org/10.1016/j.bbapap.2007.11.008
  26. Yamamoto, H., Y. Uchigata, and H. Okamoto. 1981. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 294: 284-286. https://doi.org/10.1038/294284a0

Cited by

  1. Porcine models of cutaneous wound healing. vol.56, pp.1, 2015, https://doi.org/10.1093/ilar/ilv016