참고문헌
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
- American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington, DC.
- Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
-
Borman, A. H., E. W. de Jong, M. Huizinga, D. J. Kok, P. Westbroek, and L. Bosch. 1982. The role in
$CaCO_3$ crystallization of an acid$Ca^{2+}$ -binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur. J. Biochem. 129: 179-183. https://doi.org/10.1111/j.1432-1033.1982.tb07037.x - Castanier, S., G. L. Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis - the microbiologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
- Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
- De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
- Douglas, S. and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
- Edmund, B. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. 42: 614-641. https://doi.org/10.1002/anie.200390176
- Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
- Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98. https://doi.org/10.1016/j.cemconcomp.2009.01.001
- Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
-
Ivan, S. and S. S. Branka. 2005. Influence of the primary structure of enzymes on the formation of
$CaCO_3$ polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 21: 8876-8882. https://doi.org/10.1021/la051129v - Jhung, S. H., J. H. Lee, and J. S. Chang. 2008. Crystal size control of transition metal ion-incorporated aluminophosphate molecular sieves: Effect of ramping rate in the syntheses. Micropor. Mesopor. Mater. 112: 178-186. https://doi.org/10.1016/j.micromeso.2007.09.039
- Jonkheijm, P., P. van der Schoot, A.P.H.J. Schenning, and E. W. Meijer. 2006. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313: 80-83. https://doi.org/10.1126/science.1127884
-
Kaluzynski, K., J. Pretula, and S. Penczek. 2007. Poly(ethylene glycol)-b-phosphorylated polyglycidols as
$CaCO_3$ crystal growth modifiers. II. Macromolecular architecture versus the crystal size and shape and crystallization inhibition. J. Poly. Sci. A Polym. Chem. 45: 90-98. https://doi.org/10.1002/pola.21808 -
Kawaguchi, H. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing
$CaCO_3$ polymorphism. J. Cryst. Growth 240: 230-235. https://doi.org/10.1016/S0022-0248(02)00918-1 - Knorre, H. and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M Awramik (eds.). Microbial Sediments. Springer-Verlag, Berlin, Germany.
-
Marentette, J. M., J. E. Norwig, M. E. Stockelmann, and G. W. Wolfgang. 1997. Crystallization of
$CaCO_3$ in the presence of PEO-block-PMAA copolymers. Adv. Mater. 9: 647-651. https://doi.org/10.1002/adma.19970090813 - Qiu, S., J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, and R. Xu. 1998. Strategies for the synthesis of large zeolite single crystals. Micropor. Mesopor. Mater. 21: 245-251. https://doi.org/10.1016/S1387-1811(98)00048-1
- Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
- Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
-
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of
$CaCO_3$ . Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 - Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods. 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
피인용 문헌
- Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar vol.22, pp.3, 2010, https://doi.org/10.4014/jmb.1110.10009
- Application of Antifungal CFB to Increase the Durability of Cement Mortar vol.22, pp.7, 2010, https://doi.org/10.4014/jmb.1112.12027
- Application of Bacillus subtilis 168 as a Multifunctional Agent for Improvement of the Durability of Cement Mortar vol.22, pp.11, 2010, https://doi.org/10.4014/jmb.1202.02047
- Use of bacterial cell walls to improve the mechanical performance of concrete vol.39, pp.None, 2010, https://doi.org/10.1016/j.cemconcomp.2013.03.024
- Use of bacterial cell walls to improve the mechanical performance of concrete vol.39, pp.None, 2010, https://doi.org/10.1016/j.cemconcomp.2013.03.024
- Influence of Fungus on Properties of Concrete Made with Waste Foundry Sand vol.25, pp.4, 2010, https://doi.org/10.1061/(asce)mt.1943-5533.0000521
- Biomineralization of calcium carbonates and their engineered applications: a review vol.4, pp.None, 2010, https://doi.org/10.3389/fmicb.2013.00314
- Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Isl vol.23, pp.9, 2010, https://doi.org/10.4014/jmb.1303.03085
- Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Isl vol.23, pp.9, 2010, https://doi.org/10.4014/jmb.1303.03085
- Effects of Different Calcium Salts on Calcium Carbonate Crystal Formation by Sporosarcina pasteurii KCTC 3558 vol.18, pp.5, 2010, https://doi.org/10.1007/s12257-013-0030-0
- Enrichment of compressive strength in microbial cement mortar vol.26, pp.6, 2010, https://doi.org/10.1680/adcr.13.00053
- The Effects of Paenibacillus polymyxa E681 on Antifungal and Crack Remediation of Cement Paste vol.69, pp.4, 2010, https://doi.org/10.1007/s00284-014-0604-x
- Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste vol.25, pp.8, 2015, https://doi.org/10.4014/jmb.1411.11037
- A potential biological approach for sustainable disposal of total dissolved solid of brine in civil infrastructure vol.76, pp.None, 2010, https://doi.org/10.1016/j.conbuildmat.2014.11.044
- 다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정 vol.25, pp.2, 2010, https://doi.org/10.5352/jls.2015.25.2.237
- A review of microbial precipitation for sustainable construction vol.93, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2015.04.051
- Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability vol.100, pp.7, 2010, https://doi.org/10.1007/s00253-016-7370-6
- Investigation of the Properties of Sand Tubules, a Biomineralization Product, and their Microbial Community vol.26, pp.2, 2010, https://doi.org/10.4014/jmb.1508.08033
- Formations of calcium carbonate minerals by bacteria and its multiple applications vol.5, pp.1, 2010, https://doi.org/10.1186/s40064-016-1869-2
- Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus vol.55, pp.6, 2010, https://doi.org/10.1007/s12275-017-7086-z
- Effect of Nonureolytic Bacteria on Engineering Properties of Cement Mortar vol.29, pp.6, 2010, https://doi.org/10.1061/(asce)mt.1943-5533.0001828
- Comparative process-based life-cycle assessment of bioconcrete and conventional concrete vol.15, pp.5, 2010, https://doi.org/10.1108/jedt-04-2017-0033
- Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings vol.75, pp.3, 2010, https://doi.org/10.1007/s00284-017-1373-0
- Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process vol.67, pp.2, 2010, https://doi.org/10.15446/acag.v67n2.66109
- Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-24730-3
- Bio-inspired self-healing cementitious mortar using Bacillus subtilis immobilized on nano-/micro-additives vol.30, pp.1, 2010, https://doi.org/10.1177/1045389x18806401
- Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria vol.16, pp.2, 2010, https://doi.org/10.3390/ijerph16020268
- An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal vol.21, pp.2, 2010, https://doi.org/10.1007/s10163-018-0779-5
- Calcite formation induced by Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens and Rheinheimera texasensis vol.112, pp.5, 2010, https://doi.org/10.1007/s10482-018-1204-8
- Bacterial Diversity Evolution in Maya Plaster and Stone Following a Bio-Conservation Treatment vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.599144
- Bacterial Concrete as a Sustainable Building Material? vol.12, pp.2, 2010, https://doi.org/10.3390/su12020696
- Biotechnological approach for enhancing the properties of mortar using treated wastewater vol.173, pp.2, 2020, https://doi.org/10.1680/jensu.18.00050
- The promotion of magnesium ions on aragonite precipitation in MICP process vol.263, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120057
- Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks vol.26, pp.10, 2010, https://doi.org/10.3390/molecules26102967
- Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO 3 precipitation in bio‐based cementitious composites vol.14, pp.3, 2010, https://doi.org/10.1111/1751-7915.13752
- Isolation, Screening and Characterization of Ureolytic Bacteria from Cave Ornament vol.24, pp.9, 2010, https://doi.org/10.3923/pjbs.2021.939.943