DOI QR코드

DOI QR Code

Production of Novel Cell-Associated Tannase from Newly Isolated Serratia ficaria DTC

  • Belur, Prasanna D. (Department of Chemical Engineering, National Institute of Technology Karnataka) ;
  • Gopal, Mugeraya (Department of Chemical Engineering, National Institute of Technology Karnataka) ;
  • Nirmala, K.R. (Department of Chemical Engineering, National Institute of Technology Karnataka) ;
  • Basavaraj, N. (Department of Chemical Engineering, National Institute of Technology Karnataka)
  • Received : 2009.07.28
  • Accepted : 2010.01.06
  • Published : 2010.04.28

Abstract

Five strains of tannic acid degrading bacteria were isolated and identified by phenotypic characterization. All the five isolates showed cell-associated activity, whereas only three showed extracellular activity. Serratia ficaria DTC, showing the highest cell-associated activity (0.29 U/l), was selected for further shake-flask studies. Tannase synthesis was growth associated and reached the peak in the late stationary phase of growth. Organic nitrogen sources enhanced the tannase production. Peak tannase production of 0.56 U/l was recorded in the medium having the initial pH of 6. The pH and temperature optima of the enzyme were found to be 8.9 and $35^{\circ}C$, respectively. This is the first report of cell-associated activity in the case of bacterial tannase. Cell-associated tannase of Serratia ficaria DTC could be industrially important from the perspective of its activity at broad temperature and pH ranges, and its unusually high activity at pH 8.9.

Keywords

References

  1. Admitsch, B. F. and W. A. Hampel. 2000. Formation of lipolytic enzymes by Brevibacterium linens. Biotechnol Lett. 22: 1643-1646. https://doi.org/10.1023/A:1005633828125
  2. Ayed, L. and M. Hamdi. 2002. Culture conditions of tannase production by Lactobacillus plantarum. Biotechnol. Lett. 24: 1763-1765. https://doi.org/10.1023/A:1020696801584
  3. Batra, A. and R. K. Saxena. 2005. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem. 40: 1553-1557. https://doi.org/10.1016/j.procbio.2004.03.003
  4. Bergey's Manual of Determinative Bacteriology, 1994. 9th Ed. Lippincott Williams & Wilkins, Baltimore.
  5. Belmares, R., J. C. Conttreras-Esquivel, R. Rodriguez-Herrera, A. R. Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in food industry. Lebenson. Wiss. Technol. 37: 857-864. https://doi.org/10.1016/j.lwt.2004.04.002
  6. Bhat, T. K., B. Singh, and O. P. Sharma. 1998. Microbial degradation of tannins - A current perspective. Biodegradation 9: 343-357. https://doi.org/10.1023/A:1008397506963
  7. Deschamps, A. M., G. Otuk, and G. M. Lebeault. 1983. Production of tannase and degradation of chestnut tannin by bacteria. J. Ferment. Technol. 61: 55-59.
  8. Gibson, A. W. and G. T. Macfarlane. 1988. Studies on the proteolytic activity of Bacteroides fragilis. J. Gen. Microbiol. 134: 19-27.
  9. Harrison, S. T. L. 1991. Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotech. Adv. 9: 217-240. https://doi.org/10.1016/0734-9750(91)90005-G
  10. Haslam, E. and J. E. Stangroom. 1965. The esterase and depsidase activities of tannase. J. Biochem. 99: 28-31.
  11. Kopecny, J. and R. J. Wallace. 1982. Cellular location and some properties of proteolytic enzymes of rumen bacteria, Appl. Microbiol. Biotechnol. 43: 1026-1033.
  12. Kumar, R. and M. Singh. 1984. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447-453. https://doi.org/10.1021/jf00123a006
  13. Lekha, P. K. and B. K. Lonsane. 1994. Comparative titers, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid state, liquid surface and submerged fermentation. Process Biochem. 29: 497-503. https://doi.org/10.1016/0032-9592(94)85019-4
  14. Mata-Gomez, M., L. V. Rodriguez, E. L. Ramos, J. Renovato, M. A. Cruz-Hernandez, R. Rodriguez, J. Contreras, and C. N. Aguilar. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996. https://doi.org/10.4014/jmb.0811.615
  15. Mondal, K. C., R. Banarjee, and B. R. Pati. 2000. Tannase production by Bacillus licheniformis. Biotechnol. Lett. 22: 767-769. https://doi.org/10.1023/A:1005638630782
  16. Mondal, K. C., D. Banerjee, R. Banerjee, and B. R. Pati. 2001. Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol. 47: 263-267. https://doi.org/10.2323/jgam.47.263
  17. Pereira-Meirelles, F. V., M. H. M. Rocha-Leao, G. L. and Sant'Anna Jr. 2000. Lipase location in Yarrowia lipolytica cells. Biotechnol. Lett. 22: 71-75. https://doi.org/10.1023/A:1005672731818
  18. Rajkumar, G. S. and S. C. Nandy. 1983. Isolation, purification and some properties of Penicillium chrysogenum tannase. Appl. Environ. Microb. 46: 525-527.
  19. Salamone, P. R. and R. J. Wodzinski. 1997. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl. Microbiol. Biotechnol. 48: 317-324. https://doi.org/10.1007/s002530051056
  20. Seth, M. and S. Chand. 2000. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori - Optimization of process parameters. Process Biochem. 36: 39-44. https://doi.org/10.1016/S0032-9592(00)00179-5
  21. Sinsuwan, S., S. Rodtong, and J. Yongsawatdigul. 2008. Characterization of $Ca^{2+}$-activated cell-bound proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation. Lebenson. Wiss. Technol. 41: 2166-2174. https://doi.org/10.1016/j.lwt.2008.02.002
  22. Smith, A. H., E. Zoetendel, and R. I. Mackie. 2005. Bacterial mechanism to overcome inhibitory effects of dietary tannins. Microb. Ecol. 50: 197-205. https://doi.org/10.1007/s00248-004-0180-x
  23. Van de Lagemaat, J. and D. L. Pyle. 2001. Solid state fermentation and bioremediation: Development of continuous process for the production of fungal tannase. Chem. Eng. J. 84: 115-123. https://doi.org/10.1016/S1385-8947(01)00196-6
  24. Yan, J.-Y. and Y.-J. Yan. 2008. Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in mcroaqueous solvent. Appl. Microbiol. Biotechnol. 78: 431-439. https://doi.org/10.1007/s00253-007-1331-z

Cited by

  1. Differential Properties of Aspergillus niger Tannase Produced Under Solid-State and Submerged Fermentations vol.165, pp.1, 2010, https://doi.org/10.1007/s12010-011-9258-3
  2. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase vol.2011, pp.None, 2010, https://doi.org/10.4061/2011/823619
  3. Isolation and Characterization of a Novel Tannase from a Metagenomic Library vol.59, pp.8, 2010, https://doi.org/10.1021/jf104394m
  4. Two-phase olive mill waste composting: Community dynamics and functional role of the resident microbiota vol.102, pp.23, 2010, https://doi.org/10.1016/j.biortech.2011.09.062
  5. Biotechnological Advances and Challenges of Tannase: An Overview vol.5, pp.2, 2012, https://doi.org/10.1007/s11947-011-0608-5
  6. Improvement of Strain Penicillium sp. EZ-ZH190 for Tannase Production by Induced Mutation vol.171, pp.6, 2010, https://doi.org/10.1007/s12010-013-0436-3
  7. Enhancement of propyl gallate yield in nonaqueous medium using novel cell-associated tannase of Bacillus massiliensis. vol.43, pp.5, 2010, https://doi.org/10.1080/10826068.2012.745873
  8. Enhancing Gallic Acid Content in Green Tea Extract by Using Novel Cell‐Associated Tannase of Bacillus massiliensis vol.37, pp.5, 2010, https://doi.org/10.1111/jfbc.12003
  9. Enhanced tannase production by Bacillus subtilis PAB2 with concomitant antioxidant production vol.2, pp.4, 2010, https://doi.org/10.1016/j.bcab.2013.06.007
  10. Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor vol.37, pp.11, 2010, https://doi.org/10.1007/s00449-014-1208-3
  11. Gallic acid production under anaerobic submerged fermentation by two bacilli strains vol.14, pp.None, 2015, https://doi.org/10.1186/s12934-015-0386-2
  12. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2 vol.19, pp.None, 2010, https://doi.org/10.1186/s12934-020-01353-w