DOI QR코드

DOI QR Code

Neuroprotective Effects of a Novel Peptide Purified from Venison Protein

  • Kim, Eun-Kyung (Department of Biotechnology, College of Medicine Konkuk University) ;
  • Lee, Seung-Jae (Department of Biotechnology College of Medicine Konkuk University) ;
  • Moon, Sang-Ho (Korean Nokyong Research Center, College of Medicine Konkuk University) ;
  • Jeon, Byong-Tae (Korean Nokyong Research Center, College of Medicine Konkuk University) ;
  • Kim, Bo-Kyung (Department of Physiology, College of Medicine Konkuk University) ;
  • Park, Tae-Kyu (Department of Biotechnology, College of Medicine Konkuk University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Pyo-Jam (Department of Biotechnology, College of Medicine Konkuk University)
  • Received : 2009.09.21
  • Accepted : 2009.11.25
  • Published : 2010.04.28

Abstract

A novel antioxidative peptide (APVPH I, antioxidative peptides from venison protein hydrolysates I) was purified from venison by enzymatic hydrolysis, column chromatography of DEAE-Sephacel, and high-performance liquid chromatography. The molecular mass of the purified peptide was found to be 9,853 Da and the amino acid sequences of the purified peptide was Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly. The purpose of this study was to evaluate the effects of APVPH I against $H_2O_2$-induced neuronal cells damage in PC-12 cells. Antioxidative enzyme levels in cultured neuronal cells were increased in the presence of the peptide. In addition, APVPH I inhibited productions of nitric oxide (NO), reactive oxygen species (ROS), malondialdehyde (MDA), and cell death against $H_2O_2$-induced neuronal cell damage in PC-12 cells. It was presumed to be APVPH I involved in regulating the apoptosis-related gene expression in the cell environment. The present results indicate that APVPH I substantially contributes to antioxidative properties in neuronal cells.

Keywords

References

  1. Bai, J., A. M. Rodriguez, J. A. Melendez, and A. I. Cederbaum. 1999. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J. Biol. Chem. 274: 26217-26224. https://doi.org/10.1074/jbc.274.37.26217
  2. Bass, D. A., J. W. Parce, L. R. Dechatelet, P. Szejda, M. C. Seeds, and M. Thomas. 1983. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130: 1910-1917.
  3. Bernardi, P., K. M. Broekemeier, and D. R. Pfeiffer. 1994. Recent progress on regulation of the mitochondrial permeability transition pore: A cyclosporine-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26: 509-517. https://doi.org/10.1007/BF00762735
  4. Brandt, R. and A. S. Keston. 1965. Synthesis of diacetylchlorofluorescin: A stable reagent for fluorometric analysis. Anal. Biochem. 11: 6-9. https://doi.org/10.1016/0003-2697(65)90035-7
  5. Brown, G. C. and A. Bal-Price. 2003. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 27: 325-355. https://doi.org/10.1385/MN:27:3:325
  6. Cantarella, G., L. Lempereur, M. A. D'Alcamo, N. Risuglia, V. Cardile, G. Pennisi, et al. 2007. Trail interacts redundantly with nitric oxide in rat astrocytes: Potential contribution to neurodegenerative processes. J. Neuroinmmunol. 182: 41-47. https://doi.org/10.1016/j.jneuroim.2006.09.007
  7. Chao, D. T. and S. J. Korsmeyer. 1998. Bcl-2 family: Regulators of cell death. Annu. Rev. Immunol. 16: 395-419 https://doi.org/10.1146/annurev.immunol.16.1.395
  8. Clare, D. A. and H. E. Swaisgood. 2000. Bioactive milk peptides: A prospectus. J. Dairy Sci. 83: 1187-1195. https://doi.org/10.3168/jds.S0022-0302(00)74983-6
  9. Clairborne, A. and R. A. Greenwald. 1984. Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton.
  10. Cory, S. and J. M. Adams. 2002. The Bcl-2 family: Regulators of cellular life-or-death switch. Nat. Rev. Cancer 2: 647-656. https://doi.org/10.1038/nrc883
  11. De, S. G. B., P. E. Donato, S. A. De, and M. J. Vidal. 1991. Role of nitric oxide in the genesis of excitatory amino acid-induced seizures from the deep prepiriform cortex. Fundam. Clin. Pharmacol. 5: 503-511. https://doi.org/10.1111/j.1472-8206.1991.tb00737.x
  12. Glascott, P. A. Jr., E. Gilfor, and J. L. Farber. 1992. Effects of vitamin E on the killing of cultured hepatocytes by tert-butyl hydroperoxide. Mol. Pharmacol. 41: 1155-1162.
  13. Habig, W. H., M. J. Pubst, and W. B. Jakoby. 1974. Glutathione S-transferase. J. Biol. Chem. 249: 7130-7139.
  14. Hasegawa, J. I., S. Kamada, W. Kamiike, S. Shimizu, T. Imazu, H. Matsuda, et al. 1996. Involvement of CPP32/Yama(-like) protease in Fas-mediated apoptosis. Cancer Res. 56: 1713-1718.
  15. Hempel, S. H., G. R. Beutner, Y. Q. O'Malley, D. A. Wessels, and D. M. Flaherty. 1999. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2,7-dichlorodihydrofluorescein diacetate, 5 (and 6)-carboxy-2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamin 123. Free Radic. Biol. Med. 27: 146-159. https://doi.org/10.1016/S0891-5849(99)00061-1
  16. Jacob, R. A. and B. J. Burri. 1996. Oxidative damage and defense. Am. J. Clin. Nutr. 63: 985-990.
  17. Kim, E. K., S. J. Lee, B. T. Jeon, S. H. Moon, B. Kim, T. K. Park, et al. 2009. Purification and characterization of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chem. 114: 1365-1370. https://doi.org/10.1016/j.foodchem.2008.11.035
  18. Kim, H. J., K. W. Lee, M. S. Kim, and H. J. Lee. 2008. Piceatannol attenuates hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells by blocking down-regulation of Bcl-XL and activation of JNK. J. Nutr. Biochem. 19: 459-466. https://doi.org/10.1016/j.jnutbio.2007.06.001
  19. Kirkland, R. A., J. A. Windelborn, J. M. Kasprzak, and J. L. Franklin. 2002. A Bax induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J. Neurosci. 22: 6480-6490.
  20. Liu, C. S., N. H. Chen, and J. T. Zhang. 2007. Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine 214: 492-497.
  21. Mannervik, B. 1985. Glutathione peroxidase. Methods Enzymol. 113: 490-495. https://doi.org/10.1016/S0076-6879(85)13063-6
  22. Moncada, S. 1997. The biology of nitric oxide. Funct. Neurol. 12: 135-140.
  23. Moncada, S. and E. A. Higgs. 1995. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9: 1319-1330.
  24. Motani, K., K. Tabata, Y. Kimura, S. Okano, and Y. Shibata. 2008. Proteomic analysis of apoptosis induced by xanthoangelol, a major constituent of Angelica keiskei, in neuroblastoma. Biol. Pharm. Bull. 31: 618-626. https://doi.org/10.1248/bpb.31.618
  25. Nath, J. and A. Powledge. 1997. Modulation of human neutrophil inflammatory responses by nitric oxide: Studies in unprimed and LPS-primed cells. J. Leukoc. Biol. 62: 805-816.
  26. Nathan, C. 1997. Inducible nitric oxide synthase: What difference does it make? J. Clin. Invest. 100: 2417-2423. https://doi.org/10.1172/JCI119782
  27. Oltvai, Z. N., C. L. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619. https://doi.org/10.1016/0092-8674(93)90509-O
  28. Pena-Ramos, E. A., Y. L. Xiong, and G. E. Arteaga. 2004. Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. J. Sci. Food Agric. 84: 1908-1918. https://doi.org/10.1002/jsfa.1886
  29. Saiga, A., S. Tanabe, and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51: 3661-3667. https://doi.org/10.1021/jf021156g
  30. Sibel, K. and K. Canan. 2005. The protective effects of Achillea L. species native in Turkey against $H_2O_2$-induced oxidative damage in human erythrocytes and leucocyte. J. Ethnopharmacol. 102: 221-227. https://doi.org/10.1016/j.jep.2005.06.018
  31. Suetsuna, K., H. Ukeda, and H. Ochi. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11: 128-131. https://doi.org/10.1016/S0955-2863(99)00083-2
  32. Tamura, M., N. Oschino, and B. Chance. 1982. Some characteristics of hydrogen and alkyl-hydroperoxides metabolizing systems in cardiac tissue. J. Biochem. 92: 1019-1031.
  33. Taylor, B. S., L. H. Alarcon, and T. R. Billiar. 1998. Inducible nitric oxide synthase in the liver: Regulation and function. Biochemistry (Mosc) 63: 766-781.
  34. Tilly, J. L., K. I. Kowalski, A. L. Johnson, and A. J. Hsueh. 1991. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129: 2799-2801. https://doi.org/10.1210/endo-129-5-2799
  35. Weber, L. W., M. Boll, and A. Stamptl. 2003. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33: 105-136. https://doi.org/10.1080/713611034

Cited by

  1. RAW264.7 대식세포에서 왕쥐똥나무잎 추출물의 항염증 효과 vol.41, pp.9, 2010, https://doi.org/10.3746/jkfn.2012.41.9.1205
  2. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy vol.76, pp.6, 2013, https://doi.org/10.1002/jemt.22207
  3. Acetylated Chitosan Oligosaccharides Act as Antagonists against Glutamate-Induced PC12 Cell Death via Bcl-2/Bax Signal Pathway vol.13, pp.3, 2010, https://doi.org/10.3390/md13031267
  4. Mechanisms of Neuroprotective Effects of Peptides Derived from Natural Materials and Their Production and Assessment vol.18, pp.4, 2010, https://doi.org/10.1111/1541-4337.12451
  5. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review vol.116, pp.None, 2010, https://doi.org/10.1016/j.tifs.2021.04.056