DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of a cis-Epoxysuccinate Hydrolase from Bordetella sp. BK-52

  • Received : 2009.05.22
  • Accepted : 2009.10.01
  • Published : 2010.04.28

Abstract

A cis-epoxysuccinate hydrolase (CESH) from Bordetella sp. BK-52 was purified 51.4-fold with a yield of 27.1% using ammonium sulfate precipitation, ionic exchange, hydrophobic interaction, molecular sieve chromatography and an additional anion-exchange chromatography. The CESH was stable in a broad range of temperature (up to $50^{\circ}C$) and pH (4.0-10.0) with optima of $40^{\circ}C$ and pH 6.5, respectively. It could be partially inhibited by EDTA-$Na_2$, $Ag^+$, SDS, and DTT, and slightly enhanced by $Ba^{2+}$ and $Ca^{2+}$. The enzyme exhibited high stereospecificity in D(-)-tartaric acid (enantiomeric excess value higher than 99%) with $K_m$ and $V_max$ values of 18.67 mM and $94.34\;{\mu}M$/min/mg for disodium cis-epoxysuccinate, respectively. The Bordetella sp. BK-52 CESH gene, which contained 885 nucleotides (open reading frame) encoding 294 amino acids with a molecular mass of about 32 kDa, was successfully overexpressed in Escherichia coli using a T7/lac promoter vector and the enzyme activity was increased 42-times compared with the original strain. It may be an industrial biocatalyst for the preparation of D(-)-tartaric acid.

Keywords

References

  1. Archelas, A. and R. Furstoss. 1998. Epoxide hydrolases: New tools for the synthesis of fine organic chemicals. Trends Biotechnol. 16: 108-116. https://doi.org/10.1016/S0167-7799(97)01161-X
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Chung, C. T., S. L. Niemela, and R. H. Miller. 1989. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U.S.A. 86: 2172-2175. https://doi.org/10.1073/pnas.86.7.2172
  4. Ghosh, A. K., E. S. Koltun, and G. Bilcer. 2001. Tartaric acid and tartarates in the synthesis of bioactive molecules. Synthesis 9: 1281-1301.
  5. Huang, T. H. and X. M. Qian. 1990. Production of L (+) tartaric acid. Gong Ye Wei Sheng Wu 6: 14-17.
  6. Jacobs, M. H. J., A. J. van den Wijngaard, M. Pentenga, and D. B. Janssen. 1991. Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp. Eur. J. Biochem. 202: 1217-1222. https://doi.org/10.1111/j.1432-1033.1991.tb16493.x
  7. Kotik, M. and P. Kyslik. 2006. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M 200. Biochim. Biophys. Acta 1760: 245-252. https://doi.org/10.1016/j.bbagen.2005.11.002
  8. Kroutil, W., Y. Genzel, M. Pietzsch, C. Syldatk, and K. Faber. 1998. Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1. J. Biotechnol. 61: 143-150. https://doi.org/10.1016/S0168-1656(98)00025-X
  9. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  10. Liu, Y. Q. and X. K. Yan. 1983. The colorimetry mensuration for tartaric acid. Gong Ye Wei Sheng Wu 13: 32-37.
  11. Liu, Z., Y. Li, Y. Xu, L. Ping, and Y. Zheng. 2007. Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme. Appl. Microbiol. Biotechnol. 74: 99-106. https://doi.org/10.1007/s00253-006-0635-8
  12. Misawa, E., C. K. Chion, I. V. Archer, M. P. Woodland, N. Y. Zhou, S. F. Carter, D. A. Widdowson, and D. J. Leak. 1998. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp. Eur. J. Biochem. 253: 173-183. https://doi.org/10.1046/j.1432-1327.1998.2530173.x
  13. Mischitz, M., K. Faber, and A. Willetts. 1995. Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216. Biotechnol. Lett. 17: 893-898. https://doi.org/10.1007/BF00127422
  14. Nakamura, T., T. Nagasawa, F. Yu, I. Watanabe, and H. Yamada. 1994. Purification and characterization of two epoxide hydrolases from Corynebacterium sp. strain N-1074. Appl. Environ. Microbiol. 60: 4630-4633.
  15. Nardini, M., R. Rink, D. B. Janssen, and B. W. Dijkstra. 2001. Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Mol. Catal. B Enzym. 11: 1035-1042. https://doi.org/10.1016/S1381-1177(00)00049-7
  16. Pan, H. F., Z. P. Xie, W. N. Bao, and J. G. Zhang. 2008. Isolation and identification of a novel cis-epoxysuccinate hydrolase-producing Bordetella sp. BK-52 and optimization of enzyme production. Wei Sheng Wu Xue Bao 48: 1075-1081.
  17. Pan, H. F., Z. P. Xie, W. N. Bao, and J. G. Zhang. 2008. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology. Biochem. Eng. J. 42: 133-138. https://doi.org/10.1016/j.bej.2008.06.007
  18. Rink, R., M. Fennema, M. Smids, U. Dehmel, and D. B. Janssen. 1997. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 272: 14650-14657. https://doi.org/10.1074/jbc.272.23.14650
  19. Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations. Curr. Opin. Biotechnol. 12: 552-558. https://doi.org/10.1016/S0958-1669(01)00262-2
  20. Willaert, R. and L. De Vuyst. 2006. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor. Appl. Microbiol. Biotechnol. 71: 155-163. https://doi.org/10.1007/s00253-005-0163-y

Cited by

  1. High Yield Recombinant Expression, Characterization and Homology Modeling of Two Types of Cis-epoxysuccinic Acid Hydrolases vol.31, pp.5, 2010, https://doi.org/10.1007/s10930-012-9418-5
  2. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli vol.97, pp.6, 2010, https://doi.org/10.1007/s00253-012-4102-4
  3. Improvement of the Production Efficiency of l-(+)-Tartaric Acid by Heterogeneous Whole-Cell Bioconversion vol.172, pp.8, 2010, https://doi.org/10.1007/s12010-014-0830-5
  4. Revealing the hidden functional diversity of an enzyme family vol.10, pp.1, 2010, https://doi.org/10.1038/nchembio.1387
  5. Analysis of essential amino acid residues for catalytic activity of cis-epoxysuccinate hydrolase from Bordetella sp. BK-52 vol.98, pp.4, 2010, https://doi.org/10.1007/s00253-013-5019-2
  6. Structural insight into the catalytic mechanism of a cis-epoxysuccinate hydrolase producing enantiomerically pure d(−)-tartaric acid vol.54, pp.61, 2010, https://doi.org/10.1039/c8cc04398a
  7. Ultrasound-assisted D-tartaric acid whole-cell bioconversion by recombinant Escherichia coli vol.42, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2017.11.002
  8. Enantiomeric Tartaric Acid Production Using cis -Epoxysuccinate Hydrolase: History and Perspectives vol.24, pp.5, 2010, https://doi.org/10.3390/molecules24050903
  9. Cloning and characterization of an oxiranedicarboxylate hydrolase from Labrys sp. WH-1 vol.20, pp.12, 2010, https://doi.org/10.1631/jzus.b1900392