Characterization of Agarose Produced by Yeast Cell Surface Displayed-Arylsulfatase

효모 표층 Arylsulfatase에 의해 제조된 Agarose의 특성

  • Cho, Eun-Soo (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • 조은수 (동의대학교 바이오물질제어학과) ;
  • 김정환 (동의대학교 바이오물질제어학과) ;
  • 김연희 (동의대학교 바이오물질제어학과) ;
  • 남수완 (동의대학교 바이오물질제어학과)
  • Received : 2010.11.09
  • Accepted : 2010.11.22
  • Published : 2010.12.28

Abstract

Enzymatic hydrolysis of sulfate groups in agaropectin or agar simplifies the production process of high-quality or low sulfate-content agarose. This study was investigated that cell surface displayed arylsulfatase can be applied to desulfatation of agar for production of agarose. Sulfate content of agarose prepared by treatment of yeast surface-displayed arylsulfatase was decreased in a enzyme dosedependent manner. Especially, 35 unit/mL of yeast surface arylsulfatase attenuated sulfate content of agarose up to 0.2%. In the 0.6% agar(Junsei), 35 unit/mL enzyme treated at $40^{\circ}C$ for 3 h showed the lowest content of sulfate. Therefore, this result was determined to be the optimal condition to desulfatation of agar for production of agarose. In addition, the gel strength of yeast surface arylsulfatase treated agar and commercial agarose were compared. Agarose prepared by treatment of yeast surface arylsulfatase showed $559.8{\pm}0.12$ of gel strength, and it is a similar compared to the commercial agarose.

Agar로부터 agarose 제조 시 유기용매를 이용해서 황을 제거하는 방법이 일반적으로 많이 사용되어진다. 하지만 agar의 황을 가수 분해하는 효소를 사용할 경우 agarose 제조 시공정과정을 획기적으로 간소화할 수 있다. 따라서 arylsulfatase로 agaropectin에서 황 제거를 통해 agarose로 바꾸는 공정은 간단하고 높은 수율을 얻을 수 있기 때문에 agarose 생산에 효율적으로 적용할 수 있다. 본 연구에서는 arylsulfatase를 세포표면에 발현하는 효모생촉매를 이용하여 제조한 agarose의 황 함량과 gel 강도를 측정하였다. 처리한 효모(효)소의 농도가 증가할수록 증가된 탈황 반응에 의해 황함량이 줄어들었고, 특히 35 unit/mL의 효소 농도로 처리하였을 때 황 함량은 0.2%까지 감소하는 것을 확인할 수 있었다. 황 함량을 가장 낮출 수 있는 최적 조건은 0.6% agar(Junsei) 용액에 효모 표층 arylsulfatase 35 unit/mL로 처리하고 $40^{\circ}C$에서 3시간 반응시켰을 때 였다. 또한 1.0% DNA 전기 영동용 agarose의 gel 강도는 효모 표층 arylsulfatase 처리로 제조된 agarose의 경우 $559.8{\pm}0.12$로 상업적 agarose의 gel 강도($880.6{\pm}0.15\;g/cm^2$와) 보다는 낮았다. 따라서 효모 S. cerevisiae의 세포 표면에서 발현된 재조합 arylsulfatase 효소를 이용하여 agar로부터 전기영동용 agarose의 생산 공정에 적용 가능함을 알 수 있었다.

Keywords

References

  1. Allan, G., P. G. Johnson, Y. Lay, and K. V. Sarkanen. 1971. Marine polymers; Part 1. A new procedure for the fractionation of agar. Carbohydr. Res. 17: 234-236. https://doi.org/10.1016/S0008-6215(00)81565-7
  2. Araki, C. 1937. Agar-agar. III. Acetylation of the agar-like substance of Gelidium amansii(L). J. Chem. Soc. Japan 58: 1338-1350.
  3. Beil, S., H. Kehrli, J. Peter, W. Staudenmann, A. M. Cook, T. Leisinger, and M. A. Kertesz. 1995. Purification and characterization of the agaropectin sulfatase synthesized by Psedomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene(atsA). Eur. J. Biochem. 229: 385-394. https://doi.org/10.1111/j.1432-1033.1995.0385k.x
  4. Cho, E. S., H. J. Kim, J. H. Kim, Y. H. Kim, and S. W. Nam. 2009. Cell surface display of arylsulfatase gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae. Kor. J. Mol. Biol. 37: 355-360.
  5. De Hostos, E. L., R. K. Togasaki, and A. Grossman. 1988. Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinharditii. J. Cell Biol. 106: 29-37. https://doi.org/10.1083/jcb.106.1.29
  6. Delisle, G. and F. H. Milazzo. 1970. The isolation of arylsulphatase isoenzymes from pseudomonas aeruginosa. Biochim. Biophys. Acta 212: 505-508. https://doi.org/10.1016/0005-2744(70)90258-5
  7. Dodgson, K. S. and R. G. Price. 1963. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem J. 84: 350-356.
  8. Duckworth, M. and W. Yaphe. 1971. The structure of agar. Part 1. Fractionation of a complex mixture of polysaccharides. Carbohyd. Res. 16: 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  9. Flemenger, G., B. Solomon, T. Wolf, and E. Hadas. 1990. Effect of polyethylene glycol on the non-specific adsorption of proteins to Eupergit C and agarose. J. Chromatogr. 510: 271-279. https://doi.org/10.1016/S0021-9673(01)93761-6
  10. Georgiou, G., H. L. Poetschke, C. Stathopoulos, and J. A. Francisco. 1993. Practical applications of engineering gramnegative bacterial cell surfaces. Trends Biotechnol. 11: 6-10. https://doi.org/10.1016/0167-7799(93)90068-K
  11. Guiseley, K. B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohydr. Res. 13: 247-256. https://doi.org/10.1016/S0008-6215(00)80831-9
  12. Guiseley, K. B., F. H. Kirpatrick, R. B. Provonchee, M. M. Dumais, and S. Nochumson. 1993. A further fractionation of agarose. Hydrobiologia 260: 505-511. https://doi.org/10.1007/BF00049063
  13. Henderson, M. J. and F. H. Milazzo. 1979. Arylsulfatase in salmonella typhymurium: Detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139: 80-87.
  14. Hoshi, M. and T. Moriya. 1980. Arylsulfatase of sea-urchin sperm. 2. Arylsulfatase as a lysin of sea-urchins. Dev. Biol. 74: 343-350. https://doi.org/10.1016/0012-1606(80)90436-4
  15. Izumi, K. 1970. A new method for fractionation of agar. Agr. Biochem. 34: 1739-1740.
  16. Jansen, H. J., C. A. Hart, J. M. Rhodes, J. R. Saunders, and J. W. Smalley. 1999. A novel mucin-sulphatase activity found in Bukholderia cepacia and Pseudomonas aeruginosa. J. Med. Microbiol. 48: 551-557. https://doi.org/10.1099/00222615-48-6-551
  17. Kim, D. S., D. S. Lee, D. M. Cho, H. R. Kim, and J. H. Pyeun. 1995. Trace components and functional saccharides in marine algae 2. Dietary fiber content and distribution of the agal polysaccharides. J. Korean Fis. Soc. 28: 270-278.
  18. Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharides production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367.
  19. Kim, H. C., C. K. Lim, B. W. Kim, S. J. Jeon, and S. W. Nam. 2005. Surface display of bacillus CGTase on the cell of Saccharomyces cerevisiae. Kor. J. Life Sci. 15: 118-123. https://doi.org/10.5352/JLS.2005.15.1.118
  20. Kim, H. J., J. H. Lee, H. C. Kim, J. W. Lee, Y. H. Kim, and S. W. Nam. 2007. Characterization of cyclofructans from inulin by Saccharomyces cerevisiae strain displaying cellsurface cycloinulooligosaccharide fructanotransferase. J. Microbiol. Biotechnol. 17: 695-700.
  21. Kim, H. J., J. H. Lee, Y. H. Kim, and S. W. Nam. 2008. Production of xylooligosaccharides by yeast cell surfacedisplayed endoxylanase. Kor. J. Microbiol. Biotechnol. 36: 307-313.
  22. Kim, M. J., Y. H. Jang, M. H. Sung, Y. H. Kim, and S. W. Nam. 2007. Constitutive expressionof arylsulfatase from Pseudoalteromonas carageenovora in E. coli and its application to preparation of agarose. Kor. J. Microbiol. Biotechnol. 35: 11-16.
  23. Lee, S. R., H. O. Cho, and S. K. Park. 1975. Extraction yield and quality attributes of agar from domestic seaweeds according to various pretreatments. Korean J. Food Sci. Technol. 7: 109-114.
  24. Lim, J. M., Y. H. Jang, H. R. Kim, Y. T. Kim, T. J. Choi, J. K. Kim, and S. W. Nam. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J. Microbiol. Biotechnol. 14: 777-782.
  25. Little, M., P. Fuchs, F. Breitling, and S. Dubel. 1993. Bacterial surface presentation of proteins and peptides and alternative to phage technology. Trends Biotechnol. 11: 3-5. https://doi.org/10.1016/0167-7799(93)90067-J
  26. Mackie, W. and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides. In: Stewart WDP (eds) Algal physiology and biochemistry. Blackwell Science, Oxford, UK, pp 64-65.
  27. Melo, M. R. S., J. P. A. Feitosa, A. L. P. Freitas, and R. C. M. de Paula. 2002. Isolation and characterization of soluble sulfated polysaccaride from the red seaweed Gracilaria cornea. Carbohydr. Polym. 49: 491-498. https://doi.org/10.1016/S0144-8617(02)00006-1
  28. Miech, C., T. Dierks, T. Selmer, K. V. Figura, and B. Schmidt. 1998. Arylsulfatase from Klebsiella pneumoniaecarries a formylglycine generated from a serine. J. Biol. Chem. 273: 4835-4837. https://doi.org/10.1074/jbc.273.9.4835
  29. Milanesi, A. A. and J. W. C. Bind. 1972. Lysosomal enzymes in aquatic species II. Distribution and particle properties of thermally acclimated muscle lysosomes of rainbow trout Salmo gairdeneri. Comp. Biochem. Physiol. 41: 473-491.
  30. Renn, D. 1997. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 15: 9-14. https://doi.org/10.1016/S0167-7799(96)10069-X
  31. Schekman, R. 1985. Protein localization and membrane traffic in yeast. Ann. Rev. Cell. Biol. 1: 115-143. https://doi.org/10.1146/annurev.cb.01.110185.000555
  32. Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120. https://doi.org/10.1016/0167-7799(96)10017-2
  33. Yoon, H. S. and Y. H. Park. 1984. Studies on the composition of agarose and agartin in agar-agar. Bull Kor. Fish. Soc. 24: 27-33.