Browse > Article

Characterization of Agarose Produced by Yeast Cell Surface Displayed-Arylsulfatase  

Cho, Eun-Soo (Department of Biomaterial Control, Dong-Eui University)
Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University)
Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University)
Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.4, 2010 , pp. 428-433 More about this Journal
Abstract
Enzymatic hydrolysis of sulfate groups in agaropectin or agar simplifies the production process of high-quality or low sulfate-content agarose. This study was investigated that cell surface displayed arylsulfatase can be applied to desulfatation of agar for production of agarose. Sulfate content of agarose prepared by treatment of yeast surface-displayed arylsulfatase was decreased in a enzyme dosedependent manner. Especially, 35 unit/mL of yeast surface arylsulfatase attenuated sulfate content of agarose up to 0.2%. In the 0.6% agar(Junsei), 35 unit/mL enzyme treated at $40^{\circ}C$ for 3 h showed the lowest content of sulfate. Therefore, this result was determined to be the optimal condition to desulfatation of agar for production of agarose. In addition, the gel strength of yeast surface arylsulfatase treated agar and commercial agarose were compared. Agarose prepared by treatment of yeast surface arylsulfatase showed $559.8{\pm}0.12$ of gel strength, and it is a similar compared to the commercial agarose.
Keywords
Yeast cell-surface; arylsulfatase; Saccharomyces cerevisiae; desulfatation; agar; agarose;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Georgiou, G., H. L. Poetschke, C. Stathopoulos, and J. A. Francisco. 1993. Practical applications of engineering gramnegative bacterial cell surfaces. Trends Biotechnol. 11: 6-10.   DOI   ScienceOn
2 Renn, D. 1997. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 15: 9-14.   DOI   ScienceOn
3 Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120.   DOI   ScienceOn
4 Beil, S., H. Kehrli, J. Peter, W. Staudenmann, A. M. Cook, T. Leisinger, and M. A. Kertesz. 1995. Purification and characterization of the agaropectin sulfatase synthesized by Psedomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene(atsA). Eur. J. Biochem. 229: 385-394.   DOI   ScienceOn
5 Little, M., P. Fuchs, F. Breitling, and S. Dubel. 1993. Bacterial surface presentation of proteins and peptides and alternative to phage technology. Trends Biotechnol. 11: 3-5.   DOI   ScienceOn
6 Cho, E. S., H. J. Kim, J. H. Kim, Y. H. Kim, and S. W. Nam. 2009. Cell surface display of arylsulfatase gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae. Kor. J. Mol. Biol. 37: 355-360.   과학기술학회마을
7 Yoon, H. S. and Y. H. Park. 1984. Studies on the composition of agarose and agartin in agar-agar. Bull Kor. Fish. Soc. 24: 27-33.
8 Kim, M. J., Y. H. Jang, M. H. Sung, Y. H. Kim, and S. W. Nam. 2007. Constitutive expressionof arylsulfatase from Pseudoalteromonas carageenovora in E. coli and its application to preparation of agarose. Kor. J. Microbiol. Biotechnol. 35: 11-16.   과학기술학회마을
9 Lee, S. R., H. O. Cho, and S. K. Park. 1975. Extraction yield and quality attributes of agar from domestic seaweeds according to various pretreatments. Korean J. Food Sci. Technol. 7: 109-114.
10 Lim, J. M., Y. H. Jang, H. R. Kim, Y. T. Kim, T. J. Choi, J. K. Kim, and S. W. Nam. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J. Microbiol. Biotechnol. 14: 777-782.   과학기술학회마을
11 Mackie, W. and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides. In: Stewart WDP (eds) Algal physiology and biochemistry. Blackwell Science, Oxford, UK, pp 64-65.
12 Melo, M. R. S., J. P. A. Feitosa, A. L. P. Freitas, and R. C. M. de Paula. 2002. Isolation and characterization of soluble sulfated polysaccaride from the red seaweed Gracilaria cornea. Carbohydr. Polym. 49: 491-498.   DOI   ScienceOn
13 Miech, C., T. Dierks, T. Selmer, K. V. Figura, and B. Schmidt. 1998. Arylsulfatase from Klebsiella pneumoniaecarries a formylglycine generated from a serine. J. Biol. Chem. 273: 4835-4837.   DOI
14 Milanesi, A. A. and J. W. C. Bind. 1972. Lysosomal enzymes in aquatic species II. Distribution and particle properties of thermally acclimated muscle lysosomes of rainbow trout Salmo gairdeneri. Comp. Biochem. Physiol. 41: 473-491.
15 Schekman, R. 1985. Protein localization and membrane traffic in yeast. Ann. Rev. Cell. Biol. 1: 115-143.   DOI   ScienceOn
16 Hoshi, M. and T. Moriya. 1980. Arylsulfatase of sea-urchin sperm. 2. Arylsulfatase as a lysin of sea-urchins. Dev. Biol. 74: 343-350.   DOI   ScienceOn
17 Guiseley, K. B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohydr. Res. 13: 247-256.   DOI   ScienceOn
18 Guiseley, K. B., F. H. Kirpatrick, R. B. Provonchee, M. M. Dumais, and S. Nochumson. 1993. A further fractionation of agarose. Hydrobiologia 260: 505-511.   DOI   ScienceOn
19 Henderson, M. J. and F. H. Milazzo. 1979. Arylsulfatase in salmonella typhymurium: Detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139: 80-87.
20 Izumi, K. 1970. A new method for fractionation of agar. Agr. Biochem. 34: 1739-1740.
21 Jansen, H. J., C. A. Hart, J. M. Rhodes, J. R. Saunders, and J. W. Smalley. 1999. A novel mucin-sulphatase activity found in Bukholderia cepacia and Pseudomonas aeruginosa. J. Med. Microbiol. 48: 551-557.   DOI   ScienceOn
22 Kim, D. S., D. S. Lee, D. M. Cho, H. R. Kim, and J. H. Pyeun. 1995. Trace components and functional saccharides in marine algae 2. Dietary fiber content and distribution of the agal polysaccharides. J. Korean Fis. Soc. 28: 270-278.
23 Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharides production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367.   과학기술학회마을
24 Kim, H. C., C. K. Lim, B. W. Kim, S. J. Jeon, and S. W. Nam. 2005. Surface display of bacillus CGTase on the cell of Saccharomyces cerevisiae. Kor. J. Life Sci. 15: 118-123.   과학기술학회마을   DOI
25 Kim, H. J., J. H. Lee, H. C. Kim, J. W. Lee, Y. H. Kim, and S. W. Nam. 2007. Characterization of cyclofructans from inulin by Saccharomyces cerevisiae strain displaying cellsurface cycloinulooligosaccharide fructanotransferase. J. Microbiol. Biotechnol. 17: 695-700.   과학기술학회마을
26 Dodgson, K. S. and R. G. Price. 1963. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem J. 84: 350-356.
27 Kim, H. J., J. H. Lee, Y. H. Kim, and S. W. Nam. 2008. Production of xylooligosaccharides by yeast cell surfacedisplayed endoxylanase. Kor. J. Microbiol. Biotechnol. 36: 307-313.   과학기술학회마을
28 De Hostos, E. L., R. K. Togasaki, and A. Grossman. 1988. Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinharditii. J. Cell Biol. 106: 29-37.   DOI   ScienceOn
29 Delisle, G. and F. H. Milazzo. 1970. The isolation of arylsulphatase isoenzymes from pseudomonas aeruginosa. Biochim. Biophys. Acta 212: 505-508.   DOI   ScienceOn
30 Duckworth, M. and W. Yaphe. 1971. The structure of agar. Part 1. Fractionation of a complex mixture of polysaccharides. Carbohyd. Res. 16: 189-197.   DOI   ScienceOn
31 Araki, C. 1937. Agar-agar. III. Acetylation of the agar-like substance of Gelidium amansii(L). J. Chem. Soc. Japan 58: 1338-1350.
32 Flemenger, G., B. Solomon, T. Wolf, and E. Hadas. 1990. Effect of polyethylene glycol on the non-specific adsorption of proteins to Eupergit C and agarose. J. Chromatogr. 510: 271-279.   DOI
33 Allan, G., P. G. Johnson, Y. Lay, and K. V. Sarkanen. 1971. Marine polymers; Part 1. A new procedure for the fractionation of agar. Carbohydr. Res. 17: 234-236.   DOI   ScienceOn