Isolation and Culture Conditions of Hydrogen Producing Bacterium Enterobacter sp. ES392

수소생산균 Enterobacter sp. ES392의 분리 및 배양조건

  • Jeon, Sung-Jong (Department of Biomaterial Control (Brain Korea 21 program), Dong-Eui University) ;
  • Lee, Eon-Seok (Department of Biomaterial Control (Brain Korea 21 program), Dong-Eui University)
  • 전숭종 (동의대학교 바이오물질제어학과) ;
  • 이언석 (동의대학교 바이오물질제어학과)
  • Received : 2010.06.08
  • Accepted : 2010.10.01
  • Published : 2010.12.28

Abstract

A hydrogen-producing bacterium (strain ES392) was isolated from pond water located in the Dong-Eui University, Busan, Korea. The cell was long-rod type ($1.4\;{\mu}m$) of about ($0.6\;{\mu}m$) in diameter, and not formed flagellum and spore. Phylogenetic analysis based on the 16S rRNA sequence and biochemical studies indicated that ES392 belonged to the genus Enterobacter sp. The optimum pH and temperature for hydrogen production was 7.5 and $35^{\circ}C$, respectively. The optimization of medium compositions which maximize hydrogen production from Enterobacter sp. ES392 was determined. As a result, the maximum hydrogen production was obtained under the conditions of 4% (w/v) sucrose, 0.5% (w/v) yeast extract and 50 mM potassium phosphate buffer (pH 7.5). Under batch culture conditions, the maximal hydrogen production and yield were obtained as 3481 mL/L and 1.33 mol/mol sucrose, respectively.

수소 생산 균주 ES392sms 부산 소재 동의대학교에 위치한 연못 담수에서 분리하였다. 세포는 직경 $0.6\;{\mu}m$, 길이 $1.4\;{\mu}m$의 간균이고 편모와 포자를 형성하지 않았다. 분리된 균주의 16s rRNA 염기서열과 생화학적 특성을 바탕으로 계통학적으로 분류한 결과, ES392 균주는 Enterobacter sp.에 속하는 것으로 동정되었다. 수소생산을 위한 생육최적 pH와 온도는 각각 7.5와 $35^{\circ}C$이었다. 분리한 Enterobacter sp. ES392 균주의 수소생산을 최대화 하기 위해 배지성분을 최적화하였다. 그 결과 4%(w/v) sucrose, 0.5%(w/v) yeast extract, 50 mM potassium phosphate를 첨가한 배지 조건에서 최대수소생산량을 나타내었다. 회분식 배양 조건에서 최대 수소 생산량은 3481 mL/L이었고, 수소생산수율은 1.33mol/mol sucrose를 나타내었다.

Keywords

References

  1. Bae, M. 1995. Production of bio-hydrogen from waste materials. Research Report, Ministry of Trade, Industry and Energy, 941C401-364FPl.
  2. Bollinger, R., H. Zurrer, and R. Bachofen. 1985. Photoproduction of molecular hydrogen from wastewater of a sugar refinary by photosynthetic bacteria. Appl. Microbiol. Biotechnol. 23: 147-151. https://doi.org/10.1007/BF00938968
  3. Heyndrix, M., P. De Vos, B. Thibau, P. Stevens, and J. De Ley. 1987. Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture. System. Appl. Microbiol. 9: 163-168. https://doi.org/10.1016/S0723-2020(87)80072-3
  4. Kim, D. J., M. Morikawa, M. Takagi, and T. Imanaka. 1995. Gene cloning and characterization of thermostable peptidyl prolyl cis-trans isomerase (PPIase) from Bacillus stearothermophilus. J. Ferment. Bioeng. 79: 87-94. https://doi.org/10.1016/0922-338X(95)94073-Z
  5. Kim, K. H., Y. J. Choi, and E. Y. Kim. 2008. The optimization of biohydrogen production medium by darg fermentation with Enterobacter aerogenes. Korean J. Biotechnol. Bioeng. 23: 54-58.
  6. Kondratieva, E. N. and I. N. Gogotov. 1983. Production of molecular hydrogen in microorganism. Advan. Biochemi. Engineer. Biotech. 28: 139-191. https://doi.org/10.1007/BFb0004398
  7. Lee, K. S., C. M. Kang, and S. Y. Chung. 2003. Isolation and characterizaion of hydrogen production bacterium. Kor. J. Biotechnol. Bioeng. 18: 149-154.
  8. Lee, K. S., C. M. Kang, and S. Y. Chung. 2005. Medium composition of Enterobacter cloacae YJ-1 for maximizing hydrogen production. Kor. J. Biotechnol. Bioeng. 20: 350-354.
  9. Sawada, H. and P. L. Rogers. 1977. Photosynthetic bacteria in waste treatment: Pure culture studies. J. Fermen. Technol. 55: 297-310.
  10. Tanisho, S. and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int. J. Hygrogen Energy. 19: 807-812. https://doi.org/10.1016/0360-3199(94)90197-X
  11. Tanisho, S., Y. Suzuki, and N. Wakao. 1987. Fermentative hydrogen evolution from various substrates by Enterobacter aerogenes. Hakkokogaku 67: 29-34.
  12. Ueno, Y., S. Otsuka, and M. Morimoto. 1996. Hydrogen production from industrial wastewater by anaesobic microflora in chemostat culture. J. Ferm. Bioeng. 82: 194-197. https://doi.org/10.1016/0922-338X(96)85050-1
  13. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26. https://doi.org/10.1007/BF02660113
  14. Vignais, P. M., A. Colbeau, J. C. Wilson, and Y. Jouanneau. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. P. 155-209. Advan. Microbial. Physiol. vol. 26, Academic Press.
  15. Yerushalmi, L. and B. Volesky. 1987. Culture conditions for growth and solvent biosynthesis by a modified Clostridium acetobutyricum. Appl. Microbiol. Biotechnol. 25: 513-520.
  16. Zajic, J. E., N. Kosaric, and J. D. Brosseau. 1978. Microbial production of hydrogen. Advan. Biochem. Engineer. 9: 57-109. https://doi.org/10.1007/BFb0048091