References
- Adenipekun, C. O. and O. S. Isikhuemhen. 2008. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer). Pak. J. Biol. Sci. 11: 1634-1637. https://doi.org/10.3923/pjbs.2008.1634.1637
- Adeniyi, A. A. and O. J. Owoade. 2009. Total petroleum hydrocarbons and trace heavy metals in roadside soils along the Lagos-Badagry expressway, Nigeria. Environ. Monit. Assess. Published online, 24 July.
- Ahn, T. S., J. O. Ka, G. H. Lee, and H. G. Song. 2007. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. J. Microbiol. 45: 171-174.
- Aslantas, R., C. Ramazan, and F. Sahin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Horticamsterdam. 111: 371-377. https://doi.org/10.1016/j.scienta.2006.12.016
- Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
- Burd, G. I., D. G. Dixon, and B. R. Glick. 2000. Plant growthpromoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245. https://doi.org/10.1139/w99-143
- Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
- Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
- Eckert, B., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C(4)-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51: 17-26.
- Fijalkowska, S., K. Lisowska, and J. Dlugonski. 1998. Bacterial elimination of polycyclic hydrocarbons and heavy metals. J. Basic Microbiol. 38: 361-369. https://doi.org/10.1002/(SICI)1521-4028(199811)38:5/6<361::AID-JOBM361>3.0.CO;2-Z
- Frankenberger, W. T. Jr. and W. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241. https://doi.org/10.2136/sssaj1983.03615995004700020012x
- Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
- Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536. https://doi.org/10.1139/m95-070
- Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
- Hardy, R. F., R. D. Holsten, E. K. Jackson, and R. C. Burns. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43: 1185-1207. https://doi.org/10.1104/pp.43.8.1185
- Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
- Kahindi, J. H. P. 1997. Oxygen, hydrogen and nitrogen fixation in Azotobacter. Soil Biol. Biochem. 29: 863-869. https://doi.org/10.1016/S0038-0717(96)00213-1
- Kalloniati, C., D. Tsikou, V. Lampiri, M. N. Fotelli, H. Rennenberg, I. Chatzipavlidis, C. Fasseas, P. Katinakis, and E. Flemetakis. 2009. Characterization of a Mesorhizobium loti -type carbonic anhydrase and its role in symbiotic nitrogen fixation. J. Bacteriol. 191: 2593-2660. https://doi.org/10.1128/JB.01456-08
- Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant soil 194: 65-79. https://doi.org/10.1023/A:1004260222528
- Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.
- Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.
- Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153: 497-522. https://doi.org/10.1016/j.envpol.2007.09.015
- Li, J. and R. J. Kremer. 2006. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control 39: 58-65. https://doi.org/10.1016/j.biocontrol.2006.04.016
- Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plantgrowth promoting bacteria. J. Hazard. Mater. 166: 1154-1161. https://doi.org/10.1016/j.jhazmat.2008.12.018
- Oldroyd, G. E., M. J. Harrison, and M. Udvardi. 2005. Peace talks and trade deals. Keys to long-term harmony in legumemicrobe symbioses. Plant Physiol. 137: 1205-1210. https://doi.org/10.1104/pp.104.057661
- Pattern, C. L. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220. https://doi.org/10.1139/m96-032
- Prell, J. and P. Poole. 2006. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 14: 161-168. https://doi.org/10.1016/j.tim.2006.02.005
- Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderphores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Seefeldt, L. C., M. H. Brian, and R. D. Dennis. 2009. Mechanism of mo-dependent nitrogenase. Annu. Res. Biochem. 78: 701-722. https://doi.org/10.1146/annurev.biochem.78.070907.103812
- Siddiqui, Z. A. and K. Futai. 2009. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plantgrowth- promoting rhizobacteria and cattle manure. Pest. Manag. Sci. 65: 943-948. https://doi.org/10.1002/ps.1777
- Smil, V. 2001. Enriching the Earth: In Fritz Haber, Carl Bosch, and the Transformation of World Food Production. J. Econo. His. 61: 874-875.
- Smreczak, B., B. Maliszewska-Kordybach, and S. Martyniuk. 1999. Effect of PAHs and heavy metals on activity of soil microflora. In: Bioavailability of organic xenobiotics in the environment NATO ASI Series 64: 377-380.
- Sokhn, J., F. A. A. M. De Leij, T. D. Hart, and J. M. Lynch. 2001. Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett. Appl. Microbiol. 33: 164-168. https://doi.org/10.1046/j.1472-765x.2001.00972.x
- Udvardi, M. K., and D. A. Day. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 493-523. https://doi.org/10.1146/annurev.arplant.48.1.493
- Whang, K. S. 2001. Taxonomic characteristics of nitrogenfixing oilgotrophic bacteria from forest soil. K. J. Microbiol. 2: 114-119.
- White, J., J. Prell, E. K. James, and P. Poole. 2007. Nutrient sharing between symbionts. Plant Physiol. 144: 604-614. https://doi.org/10.1104/pp.107.097741
- Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr. Microb. 32: 67-71. https://doi.org/10.1007/s002849900012