C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험)

Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests)

  • 윤승준 (한양대학교 건설환경공학과) ;
  • 강우창 (강원대학교 바이오자원환경학과) ;
  • 배우근 (한양대학교 건설환경공학과) ;
  • 오상은 (강원대학교 바이오자원환경학과)
  • Yoon, Seung-Joon (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Kang, Woo-Chang (Department of Biological Environment, Kangwon National University) ;
  • Bae, Woo-Keun (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
  • 투고 : 2010.06.18
  • 심사 : 2010.09.24
  • 발행 : 2010.09.30

초록

본 연구는 단축질소제거(SBNR) 공정의 후속 공정 목적으로 황이용 독립영양탈질을 이용하여 유출수 내 아질산성질소를 제거하고자 황 이용 아질산성질소의 제거특성을 파악하였다. 이를 위하여 알칼리도가 이론적인 양보다 충분한 조건과 부족한 조건에서 아질산성질소와 질산성질소의 황탈질 회분식 실험을 수행하면서 메탄올의 영향을 파악하였다. 충분한 알칼리도와 완전독립영양 조건에서 초기 아질산성질소, 질산성질소 농도가 각각 100 mg N/L에서 배양 27시간 이내에 99% 이상의 질소가 제거 되었다. 탈질 속도는 질산성질소 탈질에 비해 아질산성질소 탈질이 약 1.3배 빨랐다. 아질산성질소 탈질 시 1 g 당 황산염 이온 생성량은 약 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N 이었고, 질산성질소 탈질의 경우 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N이었다. 알칼리도가 충분하지 않은 조건에서 아질산성질소는 95% 이상 높은 효율을 보였으나 15시간 정도의 긴 유도기가 관찰되었고, 질산성질소 탈질의 경우 배양기간 동안 전혀 탈질이 이루어지지 않았다. 아질산성질소 탈질에서 제거된 아질산성질소 1 g 당 황산염 이온 생성량은 약 2.6 g이었고 알칼리도 소비량은 1.2 g $CaCO_3$이었다. 모든 알칼리도 조건에서 투여한 메탄올의 아질산성질소 제거 영향은 없었다. 본 연구결과를 바탕으로 황이용탈질의 특성을 파악하여 하수 및 폐수의 특성에 맞게 반응조 운전이 이루어지면 기존 탈질 방법의 단점을 보완한 효율적인 탈질 방법이 될 것으로 판단된다.

A sulfur utilizing nitrite denitrification process could be placed after the shortcut biological nitrogen removal (SBNR) process. In this study, removal of nitrite using sulfur oxidizing denitrifier was characterized in batch tests with granular elemental sulfur as an electron donor and nitrite as an electro acceptor. At sufficient alkalinity, initial nitrite nitrogen concentration of 100 mg/L was almost completely reduced in the batch reactor within a incubation time of 22 h. Sulfate production with nitrite was 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N, while with nitrate 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N. Under the conditions of low alkalinity, nitrite removal was over 95% but 15 h of a lag phase was shown. For nitrate with low alkalinity, no denitrification occurred. Sulfate production was 2.6 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N and alkalinity consumption was 1.2 g $CaCO_3/g$ ${NO_2}^-$. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification at both low and high alkalinity. This kind of method may solve the problems of autotrophic nitrate denitrification, i.e. high sulfate production and alkalinity deficiency, to some extent.

키워드

참고문헌

  1. Ruiz, G., Jeison, D. and Chamy, R., "Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration," Water Res., 37(6), 1371-1377 (2003). https://doi.org/10.1016/S0043-1354(02)00475-X
  2. Wang, J. and Yang, N., "Partial nitrification under limited dissolved oxygen conditions," Process Biochem., 39(10), 1223-1229(2004). https://doi.org/10.1016/S0032-9592(03)00249-8
  3. Peng, Y. and Zhu, G., "Biological nitrogen removal with nitrification and denitrification via nitrite pathway," Appl. Micribiol. Biotechnol., 73(1), 15-26(2006). https://doi.org/10.1007/s00253-006-0534-z
  4. Chung, J., Bae, W., Lee, Y. W. and Rittmann, B. E., "Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors," Proc. Biochem., 42(3), 320-328(2007). https://doi.org/10.1016/j.procbio.2006.09.002
  5. Gao, D., Peng, Y., Li, B. and Liang, H., "Shorcut nitrification-denitrification by real-time control strategies," Biores. Technol., 100(7), 2298-2300(2009). https://doi.org/10.1016/j.biortech.2008.11.017
  6. Bae, W., Baek, S. C., Chung, J. W. and Lee, Y. W., "Optimal operational factors for nitrite accumulation in batch reactors," Biodegradation, 12(5), 359-366(2002).
  7. Oh, S. E., Kim, K. S., Choi, H. C., Choi, J. and Kim, I. S., "Kinetics and physiological characteristics of autotrophic denitrification by denitrifying sulfur bacteria," Water Sci. Technol., 42(3-4), 59-68(2000).
  8. Moon, H. S., Chang, S. W., Nam, K., Choe, J. and Kim, J. Y., "Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification," Environ. Pollut., 144(3), 802-807(2006). https://doi.org/10.1016/j.envpol.2006.02.020
  9. Manconi, I., Carucci, A. and Lens, P., "Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system," Biotechnol. Bioeng., 98(3), 551-560(2007). https://doi.org/10.1002/bit.21383
  10. Park, J. Y. and Yoo, Y. J., "Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose," Appl. Microbiol. Technol., 82(3), 415-429(2009). https://doi.org/10.1007/s00253-008-1799-1
  11. Batchelor, B. and Lawrernce, A. W., "A kinetics model for autotrophic denitrification using elemental sulfur," Water Res., 12(12), 1075-1084(1978). https://doi.org/10.1016/0043-1354(78)90053-2
  12. Zeng, H. and Zhang, T. C., "Evaluation of kinetic parameters of a sulfur?limestone autotrophic denitrification biofilm process," Water Res., 39(20), 4941-4952(2005). https://doi.org/10.1016/j.watres.2005.09.034
  13. Park, S. R., Seon, J., Byun, I., Cho, S., Park, T. and Lee, T., "Comparison of nitrogen removal and microbial distribution in wastewater treatment process under different electron donor conditions," Biores. Technol., 101(9), 2988-2995 (2010). https://doi.org/10.1016/j.biortech.2009.12.012
  14. Atlas, R. M., Handbook of Microbiological Media, 3rd ed, CRC Press, Boca Raton, Florida, p. 1757(2004).
  15. Bergey, D. H., Bergey's manual of determinative bacteriology, 9th ed., Williams & Wilkins, Baltimore, pp. 448-456 (1993).
  16. Michael, T. M., John, M. M. and Jack, P., Brock Biology of Microorganisms, 10th ed., Pearson education, New Jersey, pp. 567-568(2003).
  17. Oh, S. E., Bum, M. S., Yoo, Y. B., Zubair, A. and Kim, I. S., "Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments," Water Sci. Technol., 47(1), 237-244(2002).
  18. U.S. Environmental Protection Agency, "Manual Nitrogen control," EPA/625/R-93/010, Office of Research and Development. Washington, D.C., pp. 101-110(1993).