The Effect of Fumed Silica on Nitrate Reduction by Zero-valent Iron

흄드 실리카가 영가철에 의한 질산성질소 환원에 미치는 영향

  • Received : 2010.01.14
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

The effect of silica(fumed) on nitrate reduction by zero-valent iron(ZVI) was studied using batch experiment. The reduction of nitrate was tested in three different aqueous media including de-ionized water, artificial groundwater and real groundwater contaminated by nitrate. Kinetics of nitrate reduction in groundwater were faster than those in de-ionized water, and first-order rate constant($k_{obs}$) of ZVI/silica(fumed) process was about 2.5 time greater than that of ZVI process in groundwater. Amendment of Silica(fumed) also decreased ammonium presumably through adsorption on silica surface. The pHs in all processes increased due to oxidation of ZVI, but the increase was lower in groundwater due to buffering capacity of groundwater. The result also showed amount of reduced nitrate increased as initial nitrate concentration increased in groundwater. Separate adsorption isotherm experiments indicated that fumed silica itself had some degree of adsorption capacity for ammonium. The overall results indicated that silica(fumed) might be a promising material for enhancing nitrate reduction by ZVI.

다양한 반응조에서 흄드 실리카(silica(fumed))가 질산성질소 처리를 위한 영가철 공정에 미치는 영향을 알아보기 위한 회분실험(batch experiment)을 수행하였다. 반응조는 질산성질소만 주입한 경우, 질산성질소와 지하수 환경에 존재하는 이온들을 주입한 경우, 실제 질산성질소로 오염된 지하수로 구성하였다. 지하수 환경을 가진 반응조에서 질산성질소 환원 속도가 빠르게 진행되었으며, 영가철/흄드 실리카 공정이 영가철 단독 공정에 비해 약 2.5 배의 반응 상수값($k_{obs}$)을 나타냈다. 전반적으로 주요 부산물인 암모늄은 영가철 단독 공정에서 약 70% 환원율로 발생하였으며, 영가철/흄드 실리카 공정의 경우에는 암모늄 발생율이 저감되었다. 수중 pH 는 영가철이 산화되면서 pH 가 상승하였으며, 지하수 환경에서는 상대적으로 낮게 유지되었다. 모든 반응조에서 영가철/흄드 실리카 공정의 pH 가 낮게 유지되었으며, 지하수 환경에서 질산성질소가 고농도로 존재할 경우에는 저농도에 비해 pH 상승폭이 큰 것으로 나타났다. 또한 등온흡착실험을 수행한 결과, 흄드 실리카가 암모늄에 대한 흡착능을 보였다. 전반적인 결과들을 통해 흄드 실리카가 질산성질소를 처리하는 영가철 공정에 유용한 매질임을 확인하였다.

Keywords

References

  1. Winton, E. F., Tardiff, R. G., and McCabe, J. L., "Nitrate in drinking Water", J. Am. Water Works Assoc., 63(2), 95-98 (1971). https://doi.org/10.1002/j.1551-8833.1971.tb04035.x
  2. Gillham, R. W., and O'Hannesin, S. F., "Enhanced degradation of halogenated aliphatics by zero-valent iron," Ground Water 32(6), 958-967(1994). https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  3. Kim, Y.-H., and Carraway, E., "Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons," Environ. Sci. Technol. 34(10) 2014-2017(2000). https://doi.org/10.1021/es991129f
  4. Zhang, P., Tao, X., Li, Z., and Bowman, R. S., "Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets," Environ. Sci. Technol. 36(16), 3597-3603(2002). https://doi.org/10.1021/es015816u
  5. Agrawal, A., and Tratnyek, P. G., "Reduction of nitro aromatic compounds by zero-valent iron metal," Environ. Sci. Technol. 30(1), 153-160(1996). https://doi.org/10.1021/es950211h
  6. Klausen, J., Vikesland, P. J., Kohn, T., Burris, D. R., Ball, W. P., and Roberts, A.L., "Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds," Environ. Sci. Technol. 37(6), 1208-1218(2003). https://doi.org/10.1021/es025965s
  7. Powell, R. M., Puls, W. P., Hightower, S. K., and Sabatini, D. A., "Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation," Environ. Sci. Technol. 29(8), 1913-1922(1995). https://doi.org/10.1021/es00008a008
  8. Zhou, H., He, Y., Lan, Y., Mao, J., and Chen, S., "Influence of complex reagents on removal of chromium(VI) by zero-valent iron," Chemosphere 72(6), 870-874(2008). https://doi.org/10.1016/j.chemosphere.2008.04.010
  9. Liu, J., Wang, C., Shi, J., Liu, H., and Tong, Y., "Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters," J. Hazard. Mater. 163(1), 370-375(2009). https://doi.org/10.1016/j.jhazmat.2008.06.101
  10. Biterna, M., Antonoglou, L., Lazou, E., and Voutsa, D., "Arsenite removal from waters by zero-valent iron: Batch and column tests" Chemoshere 78(1), 7-12(2010). https://doi.org/10.1016/j.chemosphere.2009.10.007
  11. Chen, Y.-M., Li, C. W., and Chen, S. S., "Fluidized zero valent iron bed reactor for nitrate removal," Chemosphere 59(6), 753-759(2005). https://doi.org/10.1016/j.chemosphere.2004.11.020
  12. Sohn, K., Kang, S. W., Ahn, S., Woo, M., and Yang, S. K., "Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation," Environ. Sci. Technol. 40(17), 5514-5519(2006). https://doi.org/10.1021/es0525758
  13. Ahn, S. C., Oh, S. Y., and Cha, D. K., "Enhanced reduction of nitrate by zero-valent iron at elevated temperatures," J. Hazard. Mater. 156(1-3), 17-22(2008). https://doi.org/10.1016/j.jhazmat.2007.11.104
  14. Liou, Y. H., Lin, C. J. Weng, S. C., Ou, H. H., and Lo, S. L., "Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals," Environ. Sci. Technol. 43(7), 2482-2488(2009). https://doi.org/10.1021/es802498k
  15. Huang, Y. H., and Zhang, T. C., "Effects of low pH on nitrate reduction by iron powder," Water Res. 38(11), 2631-2642 (2004). https://doi.org/10.1016/j.watres.2004.03.015
  16. Huang, C.-P., Wang, H.-W., and Chiu, P.-C., "Nitrate reduction by metallic iron," Water Res. 32(8), 2257-2264(1998). https://doi.org/10.1016/S0043-1354(97)00464-8
  17. Su, C., and Puls, R. W., "Nitrate reduction by zero-valent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate," Environ. Sci. Technol. 38(9), 2715-2720(2004). https://doi.org/10.1021/es034650p
  18. Yang, G. C., and Lee, H. L., "Chemical reduction of nitrate by nanosized iron: kinetics and pathways," Water Res. 39(5), 884-894(2005). https://doi.org/10.1016/j.watres.2004.11.030
  19. Liou, Y. H., Lo, S. L., Lin, C. J., Hu, C. Y., Kuan, W. H., and Weng, S. C., "Methods for accelerating nitrate reduction using zero-valent iron at near-neutral pH: Effects of $H_2$-reducing pre-treatment and copper deposition," Environ. Sci. Technol. 39(24), 9643-9648(2005). https://doi.org/10.1021/es048038p
  20. Liou, Y. H., Lo, S. L., Lin, C. J., Kuan, W. H., and Weng, S. C., "Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles," J. Hazard. Mater. B127(1-3), 102-110(2008).
  21. Oh, Y. J., Song, H., Shin, W. S., Choi, S. J., and Kim, Y. H., "Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron," Chemosphere 66(5), 858-865 (2007). https://doi.org/10.1016/j.chemosphere.2006.06.034
  22. Li,, J., Li, Y., and Meng, Q., "Removal of nitrate by zero-valent iron and pillared bentonite," J. Hazard. Mater. 174(1-3), 188-193(2010). https://doi.org/10.1016/j.jhazmat.2009.09.035
  23. Lo, I. M. C., Lam, C. S. C., and Lai, K. C. K., "Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal," Water Res. 40(3) 595-605(2006). https://doi.org/10.1016/j.watres.2005.11.033
  24. Liu, Y., Phenrat, T., and Lowry, G. V., "Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and $H_2$ evolution," Environ. Sci. Technol. 41(22), 7881-7887(2007). https://doi.org/10.1021/es0711967
  25. Liu, T., Rao, P., and Lo, I. M. C., "Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron," Sci. Total Environ. 407(10), 3407-3414 (2009). https://doi.org/10.1016/j.scitotenv.2009.01.043
  26. Lai, K. C. K., and Lo, I. M. C., "Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions," Environ. Sci. Technol. 42(4), 1238-1244(2008). https://doi.org/10.1021/es071572n
  27. Westerhoff, P., and James, J., "Nitrate removal in zero-valent iron packed columns," Water Res. 37(8), 1818-1830(2003). https://doi.org/10.1016/S0043-1354(02)00539-0
  28. Su C., and Puls R. W., "Nitrate reduction by zero-valent Iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate." Environ. Sci. Technol. 38(9), 2715-2720 (2004). https://doi.org/10.1021/es034650p
  29. Hansen, H. C. B., Koch, C. B., Nancke-Krogh, H., Borggaard, O. K., and Sorensen, J., "Abiotic nitrate reduction to ammonium: Key role of green rust." Environ. Sci. Technol. 30(6), 2053-2056(1996). https://doi.org/10.1021/es950844w
  30. Hansen, H. C. B., and Koch, C. B., "Reduction of nitrate to ammonium by sulphate green rust: Activation energy and reaction mechanism", Clay Miner. 33(1), 87-101(1998). https://doi.org/10.1180/000985598545453
  31. Hansen, H. C. B., Guldberg, S., Erbs, M., and Bender Koch, C., "Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(II):Fe(III) ratio," Appl. Clay Sci. 18(1-2), 81-91(2001). https://doi.org/10.1016/S0169-1317(00)00029-6
  32. Choe, S. H., Ljestrand, H. M., and Khim, J., "Nitrate reduction by zero-valent iron under different pH regimes," Appl. Geochem. 19(3), 335-342(2004). https://doi.org/10.1016/j.apgeochem.2003.08.001
  33. Ruby, C., Upadhyay, C., Gehin, A., Ona-Nguema, G., and Genin, J. M. R., "In situ redox flexibility of Fe(II)-Fe(III) oxyhydroxycarbonate green rust and fougerite," Environ. Sci. Technol. 40(15), 4696-4702(2006). https://doi.org/10.1021/es0606834
  34. Trolard, F., Bourrie, G., Abdelmoula, M., Refait P., and Feder, F., "Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure," Clays Clay Miner. 55(3), 323-334(2007). https://doi.org/10.1346/CCMN.2007.0550308
  35. Choi, J., and Batchelor, B. "Nitrate reduction by fluoride green rust modified with copper," Chemosphere 70(6), 1108-1116 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.053
  36. Fan, X., Guan, X., Ma, J., and Ai, H., "Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control," J. Environ. Sci. 21(8), 1028-1035 (2009). https://doi.org/10.1016/S1001-0742(08)62378-5
  37. Snoeyink, V.L., "Adsorption of organic compounds", in: Pontius, F.W. (Ed.), Water Quality and Treatment. McGraw-Hill, NewYork, pp. 781-876(1990).