References
- Winton, E. F., Tardiff, R. G., and McCabe, J. L., "Nitrate in drinking Water", J. Am. Water Works Assoc., 63(2), 95-98 (1971). https://doi.org/10.1002/j.1551-8833.1971.tb04035.x
- Gillham, R. W., and O'Hannesin, S. F., "Enhanced degradation of halogenated aliphatics by zero-valent iron," Ground Water 32(6), 958-967(1994). https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
- Kim, Y.-H., and Carraway, E., "Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons," Environ. Sci. Technol. 34(10) 2014-2017(2000). https://doi.org/10.1021/es991129f
- Zhang, P., Tao, X., Li, Z., and Bowman, R. S., "Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets," Environ. Sci. Technol. 36(16), 3597-3603(2002). https://doi.org/10.1021/es015816u
- Agrawal, A., and Tratnyek, P. G., "Reduction of nitro aromatic compounds by zero-valent iron metal," Environ. Sci. Technol. 30(1), 153-160(1996). https://doi.org/10.1021/es950211h
- Klausen, J., Vikesland, P. J., Kohn, T., Burris, D. R., Ball, W. P., and Roberts, A.L., "Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds," Environ. Sci. Technol. 37(6), 1208-1218(2003). https://doi.org/10.1021/es025965s
- Powell, R. M., Puls, W. P., Hightower, S. K., and Sabatini, D. A., "Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation," Environ. Sci. Technol. 29(8), 1913-1922(1995). https://doi.org/10.1021/es00008a008
- Zhou, H., He, Y., Lan, Y., Mao, J., and Chen, S., "Influence of complex reagents on removal of chromium(VI) by zero-valent iron," Chemosphere 72(6), 870-874(2008). https://doi.org/10.1016/j.chemosphere.2008.04.010
- Liu, J., Wang, C., Shi, J., Liu, H., and Tong, Y., "Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters," J. Hazard. Mater. 163(1), 370-375(2009). https://doi.org/10.1016/j.jhazmat.2008.06.101
- Biterna, M., Antonoglou, L., Lazou, E., and Voutsa, D., "Arsenite removal from waters by zero-valent iron: Batch and column tests" Chemoshere 78(1), 7-12(2010). https://doi.org/10.1016/j.chemosphere.2009.10.007
- Chen, Y.-M., Li, C. W., and Chen, S. S., "Fluidized zero valent iron bed reactor for nitrate removal," Chemosphere 59(6), 753-759(2005). https://doi.org/10.1016/j.chemosphere.2004.11.020
- Sohn, K., Kang, S. W., Ahn, S., Woo, M., and Yang, S. K., "Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation," Environ. Sci. Technol. 40(17), 5514-5519(2006). https://doi.org/10.1021/es0525758
- Ahn, S. C., Oh, S. Y., and Cha, D. K., "Enhanced reduction of nitrate by zero-valent iron at elevated temperatures," J. Hazard. Mater. 156(1-3), 17-22(2008). https://doi.org/10.1016/j.jhazmat.2007.11.104
- Liou, Y. H., Lin, C. J. Weng, S. C., Ou, H. H., and Lo, S. L., "Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals," Environ. Sci. Technol. 43(7), 2482-2488(2009). https://doi.org/10.1021/es802498k
- Huang, Y. H., and Zhang, T. C., "Effects of low pH on nitrate reduction by iron powder," Water Res. 38(11), 2631-2642 (2004). https://doi.org/10.1016/j.watres.2004.03.015
- Huang, C.-P., Wang, H.-W., and Chiu, P.-C., "Nitrate reduction by metallic iron," Water Res. 32(8), 2257-2264(1998). https://doi.org/10.1016/S0043-1354(97)00464-8
- Su, C., and Puls, R. W., "Nitrate reduction by zero-valent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate," Environ. Sci. Technol. 38(9), 2715-2720(2004). https://doi.org/10.1021/es034650p
- Yang, G. C., and Lee, H. L., "Chemical reduction of nitrate by nanosized iron: kinetics and pathways," Water Res. 39(5), 884-894(2005). https://doi.org/10.1016/j.watres.2004.11.030
-
Liou, Y. H., Lo, S. L., Lin, C. J., Hu, C. Y., Kuan, W. H., and Weng, S. C., "Methods for accelerating nitrate reduction using zero-valent iron at near-neutral pH: Effects of
$H_2$ -reducing pre-treatment and copper deposition," Environ. Sci. Technol. 39(24), 9643-9648(2005). https://doi.org/10.1021/es048038p - Liou, Y. H., Lo, S. L., Lin, C. J., Kuan, W. H., and Weng, S. C., "Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles," J. Hazard. Mater. B127(1-3), 102-110(2008).
- Oh, Y. J., Song, H., Shin, W. S., Choi, S. J., and Kim, Y. H., "Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron," Chemosphere 66(5), 858-865 (2007). https://doi.org/10.1016/j.chemosphere.2006.06.034
- Li,, J., Li, Y., and Meng, Q., "Removal of nitrate by zero-valent iron and pillared bentonite," J. Hazard. Mater. 174(1-3), 188-193(2010). https://doi.org/10.1016/j.jhazmat.2009.09.035
- Lo, I. M. C., Lam, C. S. C., and Lai, K. C. K., "Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal," Water Res. 40(3) 595-605(2006). https://doi.org/10.1016/j.watres.2005.11.033
-
Liu, Y., Phenrat, T., and Lowry, G. V., "Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and
$H_2$ evolution," Environ. Sci. Technol. 41(22), 7881-7887(2007). https://doi.org/10.1021/es0711967 - Liu, T., Rao, P., and Lo, I. M. C., "Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron," Sci. Total Environ. 407(10), 3407-3414 (2009). https://doi.org/10.1016/j.scitotenv.2009.01.043
- Lai, K. C. K., and Lo, I. M. C., "Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions," Environ. Sci. Technol. 42(4), 1238-1244(2008). https://doi.org/10.1021/es071572n
- Westerhoff, P., and James, J., "Nitrate removal in zero-valent iron packed columns," Water Res. 37(8), 1818-1830(2003). https://doi.org/10.1016/S0043-1354(02)00539-0
- Su C., and Puls R. W., "Nitrate reduction by zero-valent Iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate." Environ. Sci. Technol. 38(9), 2715-2720 (2004). https://doi.org/10.1021/es034650p
- Hansen, H. C. B., Koch, C. B., Nancke-Krogh, H., Borggaard, O. K., and Sorensen, J., "Abiotic nitrate reduction to ammonium: Key role of green rust." Environ. Sci. Technol. 30(6), 2053-2056(1996). https://doi.org/10.1021/es950844w
- Hansen, H. C. B., and Koch, C. B., "Reduction of nitrate to ammonium by sulphate green rust: Activation energy and reaction mechanism", Clay Miner. 33(1), 87-101(1998). https://doi.org/10.1180/000985598545453
- Hansen, H. C. B., Guldberg, S., Erbs, M., and Bender Koch, C., "Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(II):Fe(III) ratio," Appl. Clay Sci. 18(1-2), 81-91(2001). https://doi.org/10.1016/S0169-1317(00)00029-6
- Choe, S. H., Ljestrand, H. M., and Khim, J., "Nitrate reduction by zero-valent iron under different pH regimes," Appl. Geochem. 19(3), 335-342(2004). https://doi.org/10.1016/j.apgeochem.2003.08.001
- Ruby, C., Upadhyay, C., Gehin, A., Ona-Nguema, G., and Genin, J. M. R., "In situ redox flexibility of Fe(II)-Fe(III) oxyhydroxycarbonate green rust and fougerite," Environ. Sci. Technol. 40(15), 4696-4702(2006). https://doi.org/10.1021/es0606834
- Trolard, F., Bourrie, G., Abdelmoula, M., Refait P., and Feder, F., "Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure," Clays Clay Miner. 55(3), 323-334(2007). https://doi.org/10.1346/CCMN.2007.0550308
- Choi, J., and Batchelor, B. "Nitrate reduction by fluoride green rust modified with copper," Chemosphere 70(6), 1108-1116 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.053
- Fan, X., Guan, X., Ma, J., and Ai, H., "Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control," J. Environ. Sci. 21(8), 1028-1035 (2009). https://doi.org/10.1016/S1001-0742(08)62378-5
- Snoeyink, V.L., "Adsorption of organic compounds", in: Pontius, F.W. (Ed.), Water Quality and Treatment. McGraw-Hill, NewYork, pp. 781-876(1990).