Effect of Fragment Removal on Development of Human Fragmented Embryos in IVF-ET Program

IVF-ET 시술 시 파편제거가 파편화된 인간배아의 발달에 미치는 효과

  • 지희준 (한나여성의원 시험관아기시술센터) ;
  • 구정진 (한나여성의원 시험관아기시술센터) ;
  • 이주옥 (한나여성의원 시험관아기시술센터) ;
  • 류형은 (미즈메디병원 아이드림센터) ;
  • 김광례 (미즈메디병원 아이드림센터) ;
  • 박찬 (미즈메디병원 아이드림센터) ;
  • 노성일 (미즈메디병원 아이드림센터)
  • Received : 2010.11.08
  • Accepted : 2010.11.29
  • Published : 2010.12.31

Abstract

Objective: To investigate the beneficial effect of fragment removal on the subsequent cell division and clinical outcome of the fragmented human embryos. Methods: A prospective study was performed in Hanna Women's Clinic and Mizmedi Hospital. Sixty couples undergoing In vitro fertilization-embryo transfer (IVF-ET) program were participated in the present study. The microsurgical fragment removal was performed in 106 fragmented embryos of 29 patients before the transfer. As a control group, 122 fragmented embryos of 31 patients were transferred without the fragment removal. Effects of fragment removal on morphological changes and clinical outcomes of fragmented embryos were investigated. Results: Mean morphological grade (G2.79) of fragmented embryos was significantly improved after the fragment removal(G1.63, p<0.001). Most of the fragmented embryos did not show a regeneration of fragments after the fragment removal during the subsequent development, and a beneficial effect of fragment removal on the development of the fragment removed embryos was observed. Implantation and pregnancy rates of fragment removed embryos were 12.3% and 31.3%, whereas the rates of control group embryos were 6.6% and 22.5%, respectively. There was no statistical significance in the rates between the two groups because of the low number of trials. Conclusion: Microsurgical fragment removal improved the subsequent development as well as the morphological grade of fragmented embryos. The fragment removal may be beneficial for neighboring blastomeres by repairing the intercellular communication and removing the secretion of the potential toxic materials by fragments.

목적: 본 연구는 체외수정 및 배아이식술 (In vitro fertilization-embryo transfer, IVF-ET)에서 인간의 파편화된 배아를 대상으로 수행한 파편제거술이 배아의 발달과 임상적 결과에 미치는 유용한 결과를 조사하고자 수행하였다. 연구방법: 본 연구는 전향적 연구로서 한나여성의원과 미즈메디병원에서 수행되었으며 IVF-ET 시술을 받는 60명의 환자를 대상으로 하였다. 실험군으로서 29명 환자의 106개의 파편화된 배아를 대상으로 이식하기 전 미세수술적 파편 제거술을 수행하였고 대조군으로서 31명의 환자의 122개의 파편화된 배아의 파편을 제거하지 않고 이식하였다. 파편 제거술이 파편화된 배아의 형태학적 변화와 임상적 결과에 미치는 영향을 조사하였다. 결과: 실험군 배아의 평균 형태학적 등급은 G2.79였으나 파편제거술 이후 G1.63 (p<0.001)로 유의하게 향상되었다. 대부분의 파편화된 배아는 파편제거 후 이어지는 배양과정 동안 파편화 현상이 재 발생하지 않았으며 파편이 제거된 배아의 발달에 파편제거술이 유용한 효과를 미치는 것이 관찰되었다. 실험군의 착상률과 임신율은 각각 12.3%와 31.3%이었으나 대조군은 각각 6.6%와 22.5%를 나타내었다. 이러한 두 군간의 결과의 차이는 낮은 시술 건수로 인해 통계학적 유의성은 없었다. 결론: 미세수술적 파편제거술은 파편화된 배아의 형태학적 등급뿐만 아니라 지속적인 발달능력을 향상시켰다. 파편제거술은 파편에 의해 손상된 세포간 전달체계의 복원과 파편에 의한 해로운 물질의 생성 가능성을 제거함으로써 주위의 할구들에게 이로운 효과를 나타낸 것으로 생각된다.

Keywords

References

  1. Johansson M, Hardarson T, Lundin K. There is a cutoff limit in diameter between a blastomere and a small anucleate fragment. J Assist Reprod Genet 2003; 20: 309-13. https://doi.org/10.1023/A:1024805407058
  2. Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod 2000; 15: 2634 -43. https://doi.org/10.1093/humrep/15.12.2634
  3. Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 1999; 71: 836-42. https://doi.org/10.1016/S0015-0282(99)00092-8
  4. Hardy K, Stark J, Winston RM. Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol Reprod 2003; 68: 1165-9. https://doi.org/10.1095/biolreprod.102.010090
  5. Van Blerkom J, Davis P, Alexander S. A microscopic and biochemical study of fragmentation phenotypes in stageappropriate human embryos. Hum Reprod 2001; 16: 719-29. https://doi.org/10.1093/humrep/16.4.719
  6. Ebner T, Yaman C, Moser M, Sommergruber M, Polz W, Tews G. Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome. Fertil Steril 2001; 76: 281 -5. https://doi.org/10.1016/S0015-0282(01)01904-5
  7. Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod 1999; 14: 2345-9. https://doi.org/10.1093/humrep/14.9.2345
  8. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod 1997; 12: 1545-9. https://doi.org/10.1093/humrep/12.7.1545
  9. Alikani M. Cytoplasmic fragmentation in human embryos in vitro; implications and the relevance of fragment removal. In: Gardner DK, Weissman A, Howles C, Shoham Z. Textbook of assisted reproductive techniques; laboratory and clinical perspectives. London: Martin Dunitz Ltd.; 2001. p. 169-82.
  10. Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod 2001; 16: 313-8. https://doi.org/10.1093/humrep/16.2.313
  11. Keefe DL, Franco S, Liu L, Trimarchi J, Cao B, Weitzen S, et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women--toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol 2005; 192: 1256-60. https://doi.org/10.1016/j.ajog.2005.01.036
  12. Magli MC, Gianaroli L, Ferraretti AP. Chromosomal abnormalities in embryos. Mol Cell Endocrinol 2001; 183 Suppl 1: S29-34. https://doi.org/10.1016/S0303-7207(01)00574-3
  13. Ziebe S, Lundin K, Loft A, Bergh C, Nyboe Andersen A, Selleskog U, et al. FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphology. Hum Reprod 2003; 18: 2575-81. https://doi.org/10.1093/humrep/deg489
  14. Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod 2003; 9: 133-41. https://doi.org/10.1093/molehr/gag016
  15. Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod 1996; 2: 93-8. https://doi.org/10.1093/molehr/2.2.93
  16. Liu HC, He ZY, Mele CA, Veeck LL, Davis O, Rosenwaks Z. Expression of apoptosis-related genes in human oocytes and embryos. J Assist Reprod Genet 2000; 17: 521-33. https://doi.org/10.1023/A:1009497925862
  17. Bedaiwy M, Agarwal A, Said TM, Goldberg JM, Sharma RK, Worley S, et al. Role of total antioxidant capacity in the differential growth of human embryos in vitro. Fertil Steril 2006; 86: 304-9. https://doi.org/10.1016/j.fertnstert.2006.01.025
  18. Bedaiwy MA, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril 2004; 82: 593-600. https://doi.org/10.1016/j.fertnstert.2004.02.121
  19. Liu L, Keefe DL. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol Reprod 2000; 62: 1828-34. https://doi.org/10.1095/biolreprod62.6.1828
  20. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13: 998-1002. https://doi.org/10.1093/humrep/13.4.998
  21. Fabian D, Koppel J, Maddox-Hyttel P. Apoptotic processes during mammalian preimplantation development. Theriogenology 2005; 64: 221-31. https://doi.org/10.1016/j.theriogenology.2004.11.022
  22. Metcalfe AD, Hunter HR, Bloor DJ, Lieberman BA, Picton HM, Leese HJ, et al. Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation. Mol Reprod Dev 2004; 68: 35-50. https://doi.org/10.1002/mrd.20055
  23. Levy R. Genetic regulation of preimplantation embryo survival. Int Rev Cytol 2001; 210: 1-37. https://doi.org/10.1016/S0074-7696(01)10002-1
  24. Fabian D, Il'kova G, Rehak P, Czikkova S, Baran V, Koppel J. Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro. Theriogenology 2004; 61: 745-55. https://doi.org/10.1016/S0093-691X(03)00254-1
  25. Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 2002; 172: 221-36. https://doi.org/10.1677/joe.0.1720221
  26. Kamjoo M, Brison DR, Kimber SJ. Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol Reprod Dev 2002; 61: 67-77. https://doi.org/10.1002/mrd.1132
  27. Nakamura Y, Yamagata Y, Sugino N, Takayama H, Kato H. Nitric oxide inhibits oocyte meiotic maturation. Biol Reprod 2002; 67: 1588-92. https://doi.org/10.1095/biolreprod.102.005264
  28. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 2004; 62: 1186-97. https://doi.org/10.1016/j.theriogenology.2004.01.011
  29. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.
  30. Williams AC, Ford WC. Relationship between reactive oxygen species production and lipid peroxidation in human sperm suspensions and their association with sperm function. Fertil Steril 2005; 83: 929-36. https://doi.org/10.1016/j.fertnstert.2004.11.031
  31. Hashimoto S, Minami N, Yamada M, Imai H. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents. Mol Reprod Dev 2000; 56: 520-6. https://doi.org/10.1002/1098-2795(200008)56:4<520::AID-MRD10>3.0.CO;2-0
  32. Nonogaki T, Noda Y, Narimoto K, Umaoka Y, Mori T. Protection from oxidative stress by thioredoxin and superoxide dismutase of mouse embryos fertilized in vitro. Hum Reprod 1991; 6: 1305-10. https://doi.org/10.1093/oxfordjournals.humrep.a137532
  33. Keltz MD, Skorupski JC, Bradley K, Stein D. Predictors of embryo fragmentation and outcome after fragment removal in in vitro fertilization. Fertil Steril 2006; 86: 321-4. https://doi.org/10.1016/j.fertnstert.2006.01.048
  34. Cohen J, Alikani M, Liu HC, Rosenwaks Z. Rescue of human embryos by micromanipulation. Baillieres Clin Obstet Gynaecol 1994; 8: 95-116. https://doi.org/10.1016/S0950-3552(05)80026-4
  35. Eftekhari-Yazdi P, Valojerdi MR, Ashtiani SK, Eslaminejad MB, Karimian L. Effect of fragment removal on blastocyst formation and quality of human embryos. Reprod Biomed Online 2006; 13: 823-32. https://doi.org/10.1016/S1472-6483(10)61031-0
  36. Hnida C, Ziebe S. Total cytoplasmic volume as biomarker of fragmentation in human embryos. J Assist Reprod Genet 2004; 21: 335-40. https://doi.org/10.1023/B:JARG.0000045473.80338.57