토마토 유전자연관지도 상의 DarT 마커 분포

Distribution of DArT Markers in a Genetic Linkage Map of Tomato

  • 투고 : 2009.12.21
  • 심사 : 2010.04.28
  • 발행 : 2010.08.31

초록

토마토풋마름병에 저항성인 $Solanum$ $lycopersicum$ H7996와 극도감수성인 $S.$ $pimpinellifolium$ WVa700 간의 교배를 통해 획득한 재조합순계계통 $F_9$ 세대의 188개체를 이용하여 유전자연관지도를 작성하였다. 유전자지도는 DarT 260종, AFLP 74종, RFLP 4종, SNP 1종 및 SSR 22종 등 총 361종의 마커로 구성되었다. 작성된 유전자지도는 총 13개의 연관군(LG)에 2042.7cM을 포함하였으며 마커간의 평균지도거리는 5.7cM이고 이중 DArT마커는 평균 7.9cM당 1개가 분포하였다. SSR 마커의 분포를 기초로 작성된 11개 연관군들은 토마토 염색체의5번과 12번을 제외한 10개 염색체에 해당하였다. DArT 마커는 다른 마커들처럼 토마토 유전체 상에 고르게 분포하였으며, 인접 마커와의 상호분석(${\leq}$ 0.5cM) 결과 클러스터링 빈도가 13.5%인 AFLP 마커보다 3배 정도 높은 38.8%의 빈도로 최고치를 나타내었다. 본 연구를 통해 토마토에서 최초로 DarT 마커를 이용한 유전자연관지도를 작성하였다.

A genetic linkage map was constructed using 188 $F_9$ RILs derived from a cross between $Solanum$ $lycopersicum$ H7996 (resistant to bacterial wilt) and $S.$ $pimpinellifolium$ WVa700 (highly susceptible to bacterial wilt). The map consisted of 361 markers including 260 DArTs, 74 AFLPs, 4 RFLPs, 1 SNP, and 22 SSRs. The resulting linkage map was comprised of 13 linkage groups covering 2042.7 cM. The genetic linkage map had an average map distance between markers of 5.7 cM, with an average DArT marker density of 1/7.9 cM. Based on the distribution of anchor SSR markers, 11 linkage groups were assigned to 10 chromosomes of tomato except chromosomes 5 and 12. The DArT markers were distributed across the genome in a similar way as other markers and showed the highest frequency of clustering (38.8%) at ${\leq}$ 0.5 cM intervals between adjacent markers, which is 3 times higher than AFLPs (13.5%). The present study is the first utilization of DArT markers in tomato linkage map construction.

키워드

참고문헌

  1. Akbari, M., P. Wenzl, V. Caig, J. Carlig, L. Xia, and S. Yang. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409-1420. https://doi.org/10.1007/s00122-006-0365-4
  2. Balatero, C.H. 2000. Genetic analysis and molecular mapping of bacterial wilt resistance in tomato. Vol. Doctor of philosophy, University of the Phillipines, Los Banos, p. 147.
  3. Becker, J., P. Vos, M. Kuiper, F. Salamini, and M. Heun. 1995. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249:65-73. https://doi.org/10.1007/BF00290237
  4. Bernacchi, D. and S.D. Tanksley. 1997. An interspecific backcross of Lycopersicon esculentum ${\times}$ L. hirsutum: Linkage analysis and a QTL study of sexual sompatibility factors and floral traits. Genetics 147:861-877.
  5. Bradshaw, H.D. and R.F. Stettler. 1994. Molecular genetics of growth and development in populus: 2. Segregation distortion due to genetic load. Theor. Appl. Genet. 89:551-558.
  6. Carlos, L.D.T.E. 1998. Mapping of bacterial wilt resistance genes in tomato (Lycopersicon esculentum Mill.) using AFLP. University of the Philippines, Los Banos. Master thesis. p. 69.
  7. Cervera, M.-T., V. Storme, B. Ivens, J. Gusmao, B.H. Liu, V. Hostyn, J. Van Slycken, M. Van Montagu, and W. Boerjan. 2001. Dense genetic linkage maps of three populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787-809.
  8. Chen, F.Q. and M.R. Foolad. 1999. A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94-103.
  9. Foolad, M.R. 1996. Unilateral incompatibility as a major cause of skewed segregation in the cross between Lycopersicon esculentum and L. pennellii. Plant Cell Rep. 15:627-633. https://doi.org/10.1007/BF00232466
  10. Foolad, M. 2007. Molecular mapping, marker-assisted selection and map-based cloning in tomato, p. 307-356. In: R. Varshney and R. Tuberosa (eds). Genomics-Assisted Crop Improvement: Vol.2: Genomic Application in Crops. Springer. Dordrecht, The Netherlands.
  11. Frary, A., Y.M. Xu, J.P. Liu, S. Mitchell, E. Tedeschi, and S. Tanksley. 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111:291-312. https://doi.org/10.1007/s00122-005-2023-7
  12. Fulton, T., R. van der Hoeven, N. Eannetta, and S. Tanksley. 2002. Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell. 14:1457-67. https://doi.org/10.1105/tpc.010479
  13. Grandillo, S. and S.D. Tanksley. 1996. Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor. Appl. Genet. 92: 957-965. https://doi.org/10.1007/BF00224035
  14. Knapp, S., L. Bohs, M. Nee, and D.M. Spooner. 2004. Solanaceae - a model for linking genomics with biodiversity. Comp. Funct. Genom. 5:285-291. https://doi.org/10.1002/cfg.393
  15. Labate, J.A. and A.M. Baldo. 2005. Tomato SNP discovery by EST mining and resequencing. Mol. Breed. 16:343-349. https://doi.org/10.1007/s11032-005-1911-5
  16. Lakshmanan, P., R.J. Geijskes, K.S. Aitken, C.L.P. Grof, G.D. Bonnett, and G.R. Smith. 2005. Sugarcane biotechnology: The challenges and opportunities. In Vitro Cellular & Develop. Bio. Plant 41:345-363. https://doi.org/10.1079/IVP2005643
  17. Lee, J.-K., J.-Y. Park, J.-H. Kim, S.-J. Kwon, J.-H. Shin, S.-K. Hong, H.-K. Min, and N.-S. Kim. 2006. Genetic mapping of the Isaac-CACTA transposon in maize. Theor. Appl. Genet. 113:16-22. https://doi.org/10.1007/s00122-006-0263-9
  18. Lindhout, P. 2005. Genetics and breeding, p. 21-52. In: In Heuvelink E. (ed). Tomatoes. CABI Publishing.
  19. Lu, H., J. Romero-Severson, and R. Bernardo. 2002. Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105:622-628. https://doi.org/10.1007/s00122-002-0970-9
  20. Mace, E.S., L. Xia, D.R. Jordan, K. Halloran, D.K. Parh, E. Huttner, P. Wenzl, and A. Kilian. 2008. DArT markers: Diversity analyses and mapping in Sorghum bicolor. Genomics 9:26. https://doi.org/10.1186/1471-2164-9-26
  21. Maheswaran, M., P.K. Subudhi, S. Nandi, J.C. Xu, A. Parco, D.C. Yang, and N. Huang. 1997. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor. Appl. Genet. 94:39-45. https://doi.org/10.1007/s001220050379
  22. Mantovani, P., M. Maccaferri, M.C. Sanguineti, R. Tuberosa, I. Catizone, P. Wenzl, B. Thomson, J. Carling, E. Huttner, E. DeAmbrogio, and A. Kilian. 2008. An integrated DArT-SSR linkage map of durum wheat. Mol. Breed. 22:629-648. https://doi.org/10.1007/s11032-008-9205-3
  23. Mester, D., Y. Ronin, D. Minkov, E. Nevo, and A. Korol. 2003. Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269-2282.
  24. Mester, D.I., Y.I. Ronin, E. Nevo, and A.B. Korol. 2004. Fast and high precision algorithms for optimization in large-scale genomic problems. Comp. Bio. Chem. 28:281-290. https://doi.org/10.1016/j.compbiolchem.2004.08.003
  25. Miller, J.C. and S.D. Tanksley 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80:437-448.
  26. Paran, I., I. Goldman, S.D. Tanksley, and D. Zamir. 1995. Recombinant inbred lines for genetic mapping in tomato. Theor. Appl. Genet. 90:542-548.
  27. Pradhan, A.K., V. Gupta, A. Mukhopadhyay, N. Arumugam, Y.S. Sodhi, and D. Pental. 2003. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor. Appl. Genet. 106:607-614.
  28. Saliba-Colombani, V., M. Causse, M. Gervais, and J. Philouze. 2001. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29-40.
  29. Semagn, K., A. Bjornstad, H. Skinnes, A.G. Maroy, Y. Tarkegne, and M. William. 2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545-555. https://doi.org/10.1139/G06-002
  30. Smulders, M.J.M., G. Bredemeijer, W. RusKortekaas, P. Arens, and B. Vosman. 1997. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 94:264-272. https://doi.org/10.1007/s001220050409
  31. Tanksley, S.D. and F. Loaiza-Figueroa. 1985. Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proc. Natl. Acad. Sci. 82:5093-5096. https://doi.org/10.1073/pnas.82.15.5093
  32. Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de Vicente, M.W. Bonierbale, P. Brown, T.M. Fulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu, and N.D. Young. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160.
  33. Thoquet, P., J. Olivier, C. Sperisen, P. Rogowsky, H. Laterrot, and N. Grimsley. 1996. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol. Plant-Microbe Interac. 9:826-836. https://doi.org/10.1094/MPMI-9-0826
  34. Torjek, O., H. Witucka-Wall, R. Meyer, M. von Korff, B. Kusterer, C. Rautengarten, and T. Altmann. 2006. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused byepistatic interaction of two loci. Theor. Appl. Genet. 113:1551-1561. https://doi.org/10.1007/s00122-006-0402-3
  35. Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77-78. https://doi.org/10.1093/jhered/93.1.77
  36. Vos, P., R. Hogers, M. Reijans, T. van de Lee, M. Hornes, and A. Friters. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414. https://doi.org/10.1093/nar/23.21.4407
  37. Wenzl, P., J. Carling, D. Kudrna, D. Jaccoud, E. Huttner, A. Kleinhofs, and A. Kilian. 2004. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. 101:9915-9920. https://doi.org/10.1073/pnas.0401076101
  38. Wenzl, P., H.B. Li, J. Carling, M.X. Zhou, H. Raman, E. Paul, P. Hearnden, C. Maier, L. Xia, V. Caig, J. Ovesna, M. Cakir, D. Poulsen, J.P. Wang, R. Raman, K.P. Smith, G.J. Muehlbauer, K.J. Chalmers, A. Kleinhofs, E. Huttner, and A. Kilian. 2006. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. Genomics 7:206 https://doi.org/10.1186/1471-2164-7-206
  39. Wittenberg, A.H.J., T. van der Lee, C. Cayla, A. Kilian, R.G.F. Visser, and H.J. Schouten. 2005. Validation of the highthroughput marker technology DArT using the model plant Arabidopsis thaliana. Mol. Genet. Genomics 274:30-39. https://doi.org/10.1007/s00438-005-1145-6
  40. Xia, L., K. Peng, S. Yang, P. Wenzl, M.C. de Vicente, M. Fregene, and A. Kilian. 2005. DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor. Appl. Genet. 110:1092-1098. https://doi.org/10.1007/s00122-005-1937-4
  41. Yang, S.Y., W. Pang, G. Ash, J. Harper, J. Carling, P. Wenzl, E. Huttner, X.X. Zong, and A. Kilian 2006. Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor. Appl. Genet. 113:585-595. https://doi.org/10.1007/s00122-006-0317-z