Effect of Root Zone Restriction on the Growth Response and Phytonutrients Contents of Leafy Vegetables Grown in a DFT System

담액 수경재배시 근권제한이 엽채류의 생육 및 식물 영양소 함량에 미치는 영향

  • Seo, Tae-Cheol (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Rhee, Han-Cheol (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science) ;
  • Yun, Hyung-Kwon (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Chun, Chang-Hoo (Department of Plant Science, Seoul National University)
  • 서태철 (국립원예특작과학원 채소과) ;
  • 이한철 (국립원예특작과학원 시설원예시험장) ;
  • 윤형권 (국립원예특작과학원 채소과) ;
  • 전창후 (서울대학교 식물생산과학부)
  • Received : 2009.12.16
  • Accepted : 2010.03.11
  • Published : 2010.06.30

Abstract

Two leaf lettuces, chicory, endive, edible chrysanthemum, and pak-choi were hydroponically cultured under root restricted conditions in a deep flow technique system and their growth and nutritional values were investigated. Cylindrical plastic tubes with 100 mm height and diameters of 20, 25 or 30 mm were used for root restriction. Growth of all species was retarded by 25-95% as the roots zone was restricted. Pak-choi and edible chrysanthemum showed greater reduction in growth as compared with chicory and endive. Percent dry matter, C/N ratio, and contents of total ascorbic acid and total anthocyanin increased in the root restricted treatments. Contents of P and K decreased in the root restricted treatments, while contents of Mg, Fe, Mn, and Zn were not consistent among the tested species. Optimized root volumes to improve the nutritional values and to reduce the growth retardation varied depending on species of leafy vegetables. Tubes of ${\Phi}25mm{\times}100mm$ and ${\Phi}30mm{\times}100mm$ were suitable for chicory, endive and lettuce, and edible chrysanthemum and pak-choi, respectively. Results indicate that nutritional values of hydroponically-cultured leafy vegetables can be improved by root restriction.

상추 2종, 쑥갓, 청경채, 엔디브, 그리고 치커리의 엽채류담액 수경 재배 시 높이 100mm, 직경 20, 25, 30mm의 원통형의 플라스틱 튜브를 이용하여 근권제한 처리를 한 후 생육과 식물영양소를 조사하였다. 근권제한은 용기 크기에 따라 엽채류의 지상부 생체중이 25-95% 범위에서 감소하였으며, 쑥갓과 청경채가 가장 영향을 많이 받았고 엔디브나 치커리는 적게 받았다. 건물률, C/N율 및 총비타민C와 총안토시아닌의 함량은 근권제한에 의해 증가하였다. 무기성분 중 P와 K함량은 근권제한에 의해 모든 작물에서 감소하였지만, Mg, Fe, Mn, Zn 등은 작물에 따라 차이가 있었다. 식물 영양적 가치를 증가시키고 생육 억제를 감소하기 위한 적절한 근권 용적은 엽채류 종류에 따라 달랐다. 치커리, 엔디브, 그리고 상추는 ${\Phi}25mm{\times}100mm$, 쑥갓과 청경채는 ${\Phi}30mm{\times}100mm$ 튜브 처리에서 각각 가장 좋은 결과를 보였다. 이상의 결과, 수경재배 시 원통형의 플라스틱 튜브를 이용한 근권제한 처리가 엽채류의 영양적 가치를 향상시킬 수 있다는 것을 시사하였다.

Keywords

References

  1. Bar-Tal, A., A. Feigin, S. Sheinfeld, R. Rosenberg, B. Strenbaum, I. Rylski, and E. Pressman. 1995. Root restriction and $NO_{3}-N$ solution concentration effects on nutrient uptake, transpiration and dry matter production of tomato. Sci. Hort. 63:195-208. https://doi.org/10.1016/0304-4238(95)00793-S
  2. Campostrini, E. and O.K. Yamanishi. 2001. Influence of mechanical root restriction on gas-exchange of four papaya genotypes. R. Bras. Fisiol. Veg. 13:129-138. https://doi.org/10.1590/S0103-31312001000200002
  3. Chen, J.L. and J.F. Reynolds. 1996. A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot. 80:45-55.
  4. Feeney, M.J. 2004. Fruits and the prevention of lifestyle-related diseases. Clinical and experimental pharmacology and physiology. 31:11-13. https://doi.org/10.1111/j.1440-1681.2004.04104.x
  5. Ferree D.C. and J.G. Streeter. 2004. Response of container-grown grapevines to soil compaction. HortScience 39:1250-1254.
  6. Ferree, D.C., J.G. Streeter, and Y. Yuncong. 2004. Response of container-grown apple trees to soil compaction. HortScience 39:40-48.
  7. Goldman, I.L. 2003. Recognition of fruit and vegetables as healthful: Vitamins and phytonutrients. HortTechnol. 13:252-258.
  8. Gross, J. 1987. Pigments in fruits. Hebrew University of Jerusalem. Academic Press. p. 1-85.
  9. Hoagland, D.R. and D.J. Arnon. 1952. The water culture method for growing plants without soil. Circular of the Californian Agricultural Experiment Station p. 347.
  10. Hurley, M.B. and J.S. Rowarth. 1999. Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restricted stress. J. Expt. Bot. 50:799-804. https://doi.org/10.1093/jexbot/50.335.799
  11. Ismail, M.R. and W.J. Davies. 1998. Root restriction affects leaf growth and stomatal response: the role of xylem sap ABA. Sci. Hort. 74:257-268. https://doi.org/10.1016/S0304-4238(98)00090-9
  12. Kim, J.H., G.I. Nonaka, K. Fujieda, and S. Uemoto. 1989a. Anthocyanidin malony glucosides in flowers of Hibiscus syriacus. Phytochemistry 28:1503-1506. https://doi.org/10.1016/S0031-9422(00)97774-4
  13. Kim, J.H., I. Miyajima, K. Fujieda, and S. Uemoto. 1989b. Anthocyanidin 3-glucosides and in vitro unstable anthocyanins from Hibiscus syriacus. J. Fac. Agr., Kyushu Univ. 33:243-251.
  14. Kong, M.J., L.S. Chia, N.K. Goh, T.F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64:923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  15. Lee, S.G., S.I. Shin, and B.H. Kang. 1996. Effect of space limitation of rhizosphere on morphology and development of root system in tobacco seedlings. Kor. J. Crop. Sci. 41:475-481
  16. Leskovar, D.I. and P.J. Stoffella. 1995. Vegetable seedling root systems: morphology, development, and importance. HortScience 30:1153-1159.
  17. Liu, A. and J.G. Latimer. 1995. Root cell volume in the planter flat affects watermelon seedling development and fruit yield. HortScience 30:242-246.
  18. Lucier, G. and J. Alberto. 2005. Vegetables and melons outlook. April 21, 2005. USDA/ERS. Electric outlook report from the economic research service. (available on-line at http://www.ers.usda.gov).
  19. Miller, A.H., V. Mittova, G. Kiddle, J.L. Heazlewood, C.G. Bartoli, F.L. Theodoulou, and C.H. Foyer. 2003. Control of ascorbate synthesis by respiration and its implication for stress responses. Plant Physiol. 122:107-111.
  20. Nishizawa, T. and K. Saito. 1998. Effects of rooting volume restriction on the growth and carbohydrate concentration in tomato plants. J. Amer. Soc. Hort. Sci. 123:581-585.
  21. Psarras, G. and I.A. Merwin. 2000. Water stress affects rhizosphere respiration rates and root morphology of young 'Mutsu' apple trees on M.9 and MM. 111 rootstocks. J. Amer. Soc. Hort. Sci. 125:588-595.
  22. Rajapakse, N. and C. He. 2007. Hypoxia effects on phytochemical compounds and antioxidant capacity in lettuce. HortScience 42:923.
  23. Singh, P. and M.M. Blanke. 2000. Deficiency of potassium but not phosphorus root respiration. Plant Growth Regulation 32:77-81. https://doi.org/10.1023/A:1006397611793
  24. Tarwadi, K. and V. Agte. 2003. Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with the micronutrient profile. Int. J. Food Sci. Nutri. 54:417-425. https://doi.org/10.1080/09637480310001622297
  25. Thomas, T.H. 1993. Effects of root restriction and growth regulator treatments on the growth of carrot (Daucus carota L.) seedlings. Plant Growth Regulation 13:95-101.
  26. van Isrsel, M. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 32: 1186-1190.
  27. Welch, R.M and R.D. Graham. 2005. Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J. Trace Elements in Medicine and Biology 18:299-307. https://doi.org/10.1016/j.jtemb.2005.03.001